coco.py 9.9 KB
Newer Older
D
dengkaipeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division
from __future__ import print_function

import os
import cv2
import numpy as np

D
dengkaipeng 已提交
22
from paddle.io import Dataset
D
dengkaipeng 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

import logging
logger = logging.getLogger(__name__)

__all__ = ['COCODataset']


class COCODataset(Dataset):
    """
    Load dataset with MS-COCO format.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): voc annotation file path.
        sample_num (int): number of samples to load, -1 means all.
        use_default_label (bool): whether use the default mapping of
            label to integer index. Default True.
        with_background (bool): whether load background as a class,
            default True.
        transform (callable): callable transform to perform on samples,
            default None.
        mixup (bool): whether return image mixup samples, default False.
        alpha (float): alpha factor of beta distribution to generate
            mixup score, used only when mixup is True, default 1.5
        beta (float): beta factor of beta distribution to generate
            mixup score, used only when mixup is True, default 1.5
    """

    def __init__(self,
                 dataset_dir='',
                 image_dir='',
                 anno_path='',
                 sample_num=-1,
                 with_background=True,
                 transform=None,
                 mixup=False,
                 alpha=1.5,
                 beta=1.5):
        # roidbs is list of dict whose structure is:
        # {
        #     'im_file': im_fname, # image file name
        #     'im_id': im_id, # image id
        #     'h': im_h, # height of image
        #     'w': im_w, # width
        #     'is_crowd': is_crowd,
        #     'gt_class': gt_class,
        #     'gt_bbox': gt_bbox,
        #     'gt_score': gt_score,
        #     'difficult': difficult
        # }

        self._anno_path = os.path.join(dataset_dir, anno_path)
        self._image_dir = os.path.join(dataset_dir, image_dir)
        assert os.path.exists(self._anno_path), \
                "anno_path {} not exists".format(anno_path)
        assert os.path.exists(self._image_dir), \
                "image_dir {} not exists".format(image_dir)

        self._sample_num = sample_num
        self._with_background = with_background
        self._transform = transform
        self._mixup = mixup
        self._alpha = alpha
87
        self._beta = beta
D
dengkaipeng 已提交
88 89 90 91 92

        # load in dataset roidbs
        self._load_roidb_and_cname2cid()

    def _load_roidb_and_cname2cid(self):
D
dengkaipeng 已提交
93
        from pycocotools.coco import COCO
D
dengkaipeng 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        assert self._anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        coco = COCO(self._anno_path)
        img_ids = coco.getImgIds()
        cat_ids = coco.getCatIds()
        records = []
        ct = 0

        # when with_background = True, mapping category to classid, like:
        #   background:0, first_class:1, second_class:2, ...
        catid2clsid = dict({
            catid: i + int(self._with_background)
            for i, catid in enumerate(cat_ids)
        })
        cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in catid2clsid.items()
        })

        for img_id in img_ids:
            img_anno = coco.loadImgs(img_id)[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False)
            instances = coco.loadAnns(ins_anno_ids)

            bboxes = []
            for inst in instances:
                x, y, box_w, box_h = inst['bbox']
                x1 = max(0, x)
                y1 = max(0, y)
                x2 = min(im_w - 1, x1 + max(0, box_w - 1))
                y2 = min(im_h - 1, y1 + max(0, box_h - 1))
                if inst['area'] > 0 and x2 >= x1 and y2 >= y1:
                    inst['clean_bbox'] = [x1, y1, x2, y2]
                    bboxes.append(inst)
                else:
                    logger.warn(
                        'Found an invalid bbox in annotations: im_id: {}, '
                        'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                            img_id, float(inst['area']), x1, y1, x2, y2))
            num_bbox = len(bboxes)

            gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
            gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
            gt_score = np.ones((num_bbox, 1), dtype=np.float32)
            is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
            difficult = np.zeros((num_bbox, 1), dtype=np.int32)
            gt_poly = [None] * num_bbox

            for i, box in enumerate(bboxes):
                catid = box['category_id']
                gt_class[i][0] = catid2clsid[catid]
                gt_bbox[i, :] = box['clean_bbox']
                is_crowd[i][0] = box['iscrowd']
                if 'segmentation' in box:
                    gt_poly[i] = box['segmentation']

            im_fname = os.path.join(self._image_dir,
                                    im_fname) if self._image_dir else im_fname
            coco_rec = {
                'im_file': im_fname,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
                'is_crowd': is_crowd,
                'gt_class': gt_class,
                'gt_bbox': gt_bbox,
                'gt_score': gt_score,
                'gt_poly': gt_poly,
            }

            records.append(coco_rec)
            ct += 1
            if self._sample_num > 0 and ct >= self._sample_num:
                break
172 173
        assert len(records) > 0, 'not found any coco record in %s' % (
            self._anno_path)
D
dengkaipeng 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        logger.info('{} samples in file {}'.format(ct, self._anno_path))
        self._roidbs, self._cname2cid = records, cname2cid

    @property
    def num_classes(self):
        return len(self._cname2cid)

    def __len__(self):
        return len(self._roidbs)

    def _getitem_by_index(self, idx):
        roidb = self._roidbs[idx]
        with open(roidb['im_file'], 'rb') as f:
            data = np.frombuffer(f.read(), dtype='uint8')
            im = cv2.imdecode(data, 1)
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
D
dengkaipeng 已提交
190 191
        im_id = roidb['im_id']
        im_shape = np.array([roidb['h'], roidb['w']], dtype='int32')
D
dengkaipeng 已提交
192 193 194
        gt_bbox = roidb['gt_bbox']
        gt_class = roidb['gt_class']
        gt_score = roidb['gt_score']
D
dengkaipeng 已提交
195
        return im_id, im_shape, im, gt_bbox, gt_class, gt_score
D
dengkaipeng 已提交
196 197

    def __getitem__(self, idx):
198 199
        im_id, im_shape, im, gt_bbox, gt_class, gt_score = self._getitem_by_index(
            idx)
D
dengkaipeng 已提交
200 201 202 203

        if self._mixup:
            mixup_idx = idx + np.random.randint(1, self.__len__())
            mixup_idx %= self.__len__()
D
dengkaipeng 已提交
204
            _, _, mixup_im, mixup_bbox, mixup_class, _ = \
D
dengkaipeng 已提交
205
                            self._getitem_by_index(mixup_idx)
206

D
dengkaipeng 已提交
207
            im_shape, im, gt_bbox, gt_class, gt_score = \
D
dengkaipeng 已提交
208 209 210 211
                    self._mixup_image(im, gt_bbox, gt_class, mixup_im,
                                      mixup_bbox, mixup_class)

        if self._transform:
D
dengkaipeng 已提交
212 213
            im_id, im_shape, im, gt_bbox, gt_class, gt_score = \
                self._transform(im_id, im_shape, im, gt_bbox, gt_class, gt_score)
D
dengkaipeng 已提交
214

D
dengkaipeng 已提交
215
        return [im_id, im_shape, im, gt_bbox, gt_class, gt_score]
D
dengkaipeng 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    def _mixup_image(self, img1, bbox1, class1, img2, bbox2, class2):
        factor = np.random.beta(self._alpha, self._beta)
        factor = max(0.0, min(1.0, factor))
        if factor >= 1.0:
            return img1, bbox1, class1, np.ones_like(class1, dtype="float32")
        if factor <= 0.0:
            return img2, bbox2, class2, np.ones_like(class2, dtype="float32")

        h = max(img1.shape[0], img2.shape[0])
        w = max(img1.shape[1], img2.shape[1])
        img = np.zeros((h, w, img1.shape[2]), 'float32')
        img[:img1.shape[0], :img1.shape[1], :] = \
            img1.astype('float32') * factor
        img[:img2.shape[0], :img2.shape[1], :] += \
            img2.astype('float32') * (1.0 - factor)

        gt_bbox = np.concatenate((bbox1, bbox2), axis=0)
        gt_class = np.concatenate((class1, class2), axis=0)

        score1 = np.ones_like(class1, dtype="float32") * factor
        score2 = np.ones_like(class2, dtype="float32") * (1.0 - factor)
        gt_score = np.concatenate((score1, score2), axis=0)

D
dengkaipeng 已提交
240 241 242
        im_shape = np.array([h, w], dtype='int32')

        return im_shape, img, gt_bbox, gt_class, gt_score
243

D
dengkaipeng 已提交
244 245 246 247 248 249 250 251 252 253 254
    @property
    def mixup(self):
        return self._mixup

    @mixup.setter
    def mixup(self, value):
        if not isinstance(value, bool):
            raise ValueError("mixup should be a boolean number")
        logger.info("{} set mixup to {}".format(self, value))
        self._mixup = value

255

D
dengkaipeng 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
def pascalvoc_label(with_background=True):
    labels_map = {
        'aeroplane': 1,
        'bicycle': 2,
        'bird': 3,
        'boat': 4,
        'bottle': 5,
        'bus': 6,
        'car': 7,
        'cat': 8,
        'chair': 9,
        'cow': 10,
        'diningtable': 11,
        'dog': 12,
        'horse': 13,
        'motorbike': 14,
        'person': 15,
        'pottedplant': 16,
        'sheep': 17,
        'sofa': 18,
        'train': 19,
        'tvmonitor': 20
    }
    if not with_background:
        labels_map = {k: v - 1 for k, v in labels_map.items()}
    return labels_map