train.py 7.2 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import six
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import time
import contextlib
22
from functools import partial
G
guosheng 已提交
23 24 25 26 27

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph import to_variable
G
guosheng 已提交
28
from paddle.fluid.io import DataLoader
G
guosheng 已提交
29 30 31 32 33

from utils.configure import PDConfig
from utils.check import check_gpu, check_version

# include task-specific libs
34
from reader import prepare_train_input, Seq2SeqDataset, Seq2SeqBatchSampler
G
guosheng 已提交
35
from transformer import Transformer, CrossEntropyCriterion, NoamDecay
36
from model import Input, set_device
G
guosheng 已提交
37 38 39 40 41 42
from callbacks import ProgBarLogger


class LoggerCallback(ProgBarLogger):
    def __init__(self, log_freq=1, verbose=2, loss_normalizer=0.):
        super(LoggerCallback, self).__init__(log_freq, verbose)
G
guosheng 已提交
43
        # TODO: wrap these override function to simplify
G
guosheng 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        self.loss_normalizer = loss_normalizer

    def on_train_begin(self, logs=None):
        super(LoggerCallback, self).on_train_begin(logs)
        self.train_metrics += ["normalized loss", "ppl"]

    def on_train_batch_end(self, step, logs=None):
        logs["normalized loss"] = logs["loss"][0] - self.loss_normalizer
        logs["ppl"] = np.exp(min(logs["loss"][0], 100))
        super(LoggerCallback, self).on_train_batch_end(step, logs)

    def on_eval_begin(self, logs=None):
        super(LoggerCallback, self).on_eval_begin(logs)
        self.eval_metrics += ["normalized loss", "ppl"]

    def on_eval_batch_end(self, step, logs=None):
        logs["normalized loss"] = logs["loss"][0] - self.loss_normalizer
        logs["ppl"] = np.exp(min(logs["loss"][0], 100))
        super(LoggerCallback, self).on_eval_batch_end(step, logs)
G
guosheng 已提交
63 64 65


def do_train(args):
66 67
    device = set_device("gpu" if args.use_cuda else "cpu")
    fluid.enable_dygraph(device) if args.eager_run else None
G
guosheng 已提交
68 69 70 71 72 73 74 75 76

    # set seed for CE
    random_seed = eval(str(args.random_seed))
    if random_seed is not None:
        fluid.default_main_program().random_seed = random_seed
        fluid.default_startup_program().random_seed = random_seed

    # define model
    inputs = [
77 78 79 80 81 82 83 84 85 86 87 88 89
        Input([None, None], "int64", name="src_word"),
        Input([None, None], "int64", name="src_pos"),
        Input([None, args.n_head, None, None],
              "float32",
              name="src_slf_attn_bias"),
        Input([None, None], "int64", name="trg_word"),
        Input([None, None], "int64", name="trg_pos"),
        Input([None, args.n_head, None, None],
              "float32",
              name="trg_slf_attn_bias"),
        Input([None, args.n_head, None, None],
              "float32",
              name="trg_src_attn_bias"),
G
guosheng 已提交
90 91 92 93 94 95 96 97
    ]
    labels = [
        Input(
            [None, 1], "int64", name="label"),
        Input(
            [None, 1], "float32", name="weight"),
    ]

98 99 100 101 102 103 104
    dataset = Seq2SeqDataset(fpattern=args.training_file,
                             src_vocab_fpath=args.src_vocab_fpath,
                             trg_vocab_fpath=args.trg_vocab_fpath,
                             token_delimiter=args.token_delimiter,
                             start_mark=args.special_token[0],
                             end_mark=args.special_token[1],
                             unk_mark=args.special_token[2])
G
guosheng 已提交
105 106
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
        args.unk_idx = dataset.get_vocab_summary()
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    batch_sampler = Seq2SeqBatchSampler(dataset=dataset,
                                        use_token_batch=args.use_token_batch,
                                        batch_size=args.batch_size,
                                        pool_size=args.pool_size,
                                        sort_type=args.sort_type,
                                        shuffle=args.shuffle,
                                        shuffle_batch=args.shuffle_batch,
                                        max_length=args.max_length)
    train_loader = DataLoader(dataset=dataset,
                              batch_sampler=batch_sampler,
                              places=device,
                              feed_list=[x.forward() for x in inputs + labels],
                              collate_fn=partial(prepare_train_input,
                                                 src_pad_idx=args.eos_idx,
                                                 trg_pad_idx=args.eos_idx,
                                                 n_head=args.n_head),
                              num_workers=0,
                              return_list=True)
G
guosheng 已提交
125

126

G
guosheng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    transformer = Transformer(
        args.src_vocab_size, args.trg_vocab_size, args.max_length + 1,
        args.n_layer, args.n_head, args.d_key, args.d_value, args.d_model,
        args.d_inner_hid, args.prepostprocess_dropout, args.attention_dropout,
        args.relu_dropout, args.preprocess_cmd, args.postprocess_cmd,
        args.weight_sharing, args.bos_idx, args.eos_idx)

    transformer.prepare(
        fluid.optimizer.Adam(
            learning_rate=fluid.layers.noam_decay(
                args.d_model, args.warmup_steps),  # args.learning_rate),
            beta1=args.beta1,
            beta2=args.beta2,
            epsilon=float(args.eps),
            parameter_list=transformer.parameters()),
        CrossEntropyCriterion(args.label_smooth_eps),
        inputs=inputs,
        labels=labels)

    ## init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint:
        transformer.load(
            os.path.join(args.init_from_checkpoint, "transformer"))
    ## init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model:
        transformer.load(
            os.path.join(args.init_from_pretrain_model, "transformer"),
            reset_optimizer=True)

    # the best cross-entropy value with label smoothing
    loss_normalizer = -(
        (1. - args.label_smooth_eps) * np.log(
            (1. - args.label_smooth_eps)) + args.label_smooth_eps *
        np.log(args.label_smooth_eps / (args.trg_vocab_size - 1) + 1e-20))

162 163
    transformer.fit(train_data=train_loader,
                    eval_data=None,
G
guosheng 已提交
164 165 166 167 168 169 170 171 172
                    epochs=1,
                    eval_freq=1,
                    save_freq=1,
                    verbose=2,
                    callbacks=[
                        LoggerCallback(
                            log_freq=args.print_step,
                            loss_normalizer=loss_normalizer)
                    ])
G
guosheng 已提交
173 174 175 176 177 178 179 180 181 182


if __name__ == "__main__":
    args = PDConfig(yaml_file="./transformer.yaml")
    args.build()
    args.Print()
    check_gpu(args.use_cuda)
    check_version()

    do_train(args)