提交 efc2c6c4 编写于 作者: W wangyang59

fix formula and graph size

上级 defbd27f
...@@ -10,14 +10,14 @@ ...@@ -10,14 +10,14 @@
生成模型在很多方面都有广泛应用。比如在图像处理方面的图像自动生成、图像去噪、和缺失图像补全等应用。比如在增强学习的条件下,可以根据之前观测到的数据和可能的操作来生成未来的数据,使得agent能够从中选择最佳的操作。比如在半监督(semi-supervised)学习的条件下,把生成模型生成的数据加入分类器训练当中,能够减少分类器训练对于标记数据数量的要求。真实世界中大量数据都是没有标注的,人为标注数据会耗费大量人力财力,这就使生成模型有了它的用武之地。 生成模型在很多方面都有广泛应用。比如在图像处理方面的图像自动生成、图像去噪、和缺失图像补全等应用。比如在增强学习的条件下,可以根据之前观测到的数据和可能的操作来生成未来的数据,使得agent能够从中选择最佳的操作。比如在半监督(semi-supervised)学习的条件下,把生成模型生成的数据加入分类器训练当中,能够减少分类器训练对于标记数据数量的要求。真实世界中大量数据都是没有标注的,人为标注数据会耗费大量人力财力,这就使生成模型有了它的用武之地。
之前出现的生成模型,一般是直接构造模型$P_model(x; \theta)$来模拟真实数据分布$P_data(x)$。而这个模拟的过程,通常是由最大似然(Maximum Likelihood)的办法来调节模型参数,使得观测到的真实数据在该模型下概率最大。这里模型的种类又可以分为两大类,一类是tractable的,一类是untractable的。第一类里的一个例子是像素循环神经网络(Pixel Recurrent Neural Network)\[[7](#参考文献)\],它是用概率的链式规则把对于n维数据的概率分解成n个一维数据的概率相乘,也就是说根据周围的像素来一个像素一个像素的生成图片。这种方法的问题是对于一个n维的数据,需要n步才能生成,速度较慢,而且图片整体看来各处不连续。 之前出现的生成模型,一般是直接构造模型$P_{model}(x; \theta)$来模拟真实数据分布$P_{data}(x)$。而这个模拟的过程,通常是由最大似然(Maximum Likelihood)的办法来调节模型参数,使得观测到的真实数据在该模型下概率最大。这里模型的种类又可以分为两大类,一类是tractable的,一类是untractable的。第一类里的一个例子是像素循环神经网络(Pixel Recurrent Neural Network)\[[7](#参考文献)\],它是用概率的链式规则把对于n维数据的概率分解成n个一维数据的概率相乘,也就是说根据周围的像素来一个像素一个像素的生成图片。这种方法的问题是对于一个n维的数据,需要n步才能生成,速度较慢,而且图片整体看来各处不太连续。
为了能有更复杂的模型来模拟数据分布,人们提出了第二类untractable的模型,这样就只能用近似的办法来学习模型参数。近似的办法一种是构造一个似然的下限(Likelihood lower-bound),然后用变分的办法来提高这个下限的值,其中一个例子是变分自编码器(variational autoencoder)\[[3](#参考文献)\]。用这种方法产生的图片,虽然似然比较高,但经常看起来会比较模糊。近似的另一种办法是通过马尔可夫链-蒙地卡罗(Markov-Chain-Monte-Carlo)来取样本,比如深度玻尔兹曼机(Deep Boltzmann Machine)\[[5](#参考文献)\]就是用的这个方法。这种方法的问题是取样本的计算量非常大,而且没有办法并行化。 为了能有更复杂的模型来模拟数据分布,人们提出了第二类untractable的模型,这样就只能用近似的办法来学习模型参数。近似的办法一种是构造一个似然的下限(Likelihood lower-bound),然后用变分的办法来提高这个下限的值,其中一个例子是变分自编码器(variational autoencoder)\[[3](#参考文献)\]。用这种方法产生的图片,虽然似然比较高,但经常看起来会比较模糊。近似的另一种办法是通过马尔可夫链-蒙地卡罗(Markov-Chain-Monte-Carlo)来取样本,比如深度玻尔兹曼机(Deep Boltzmann Machine)\[[5](#参考文献)\]就是用的这个方法。这种方法的问题是取样本的计算量非常大,而且没有办法并行化。
为了解决这些问题,人们又提出了本章所要介绍的另一种生成模型,对抗式生成网络。它相比于前面提到的方法,具有生成网络结构灵活,产生样本快,生成图像看起来更真实的优点。 为了解决这些问题,人们又提出了本章所要介绍的另一种生成模型,对抗式生成网络。它相比于前面提到的方法,具有生成网络结构灵活,产生样本快,生成图像看起来更真实的优点。下面的图1就对比了上面介绍的几种方法在生成CIFAR-10图片时的效果。
<p align="center"> <p align="center">
<img src="./image/cifar_comparisons.jpg" width="700" height="200"><br/> <img src="./image/cifar_comparisons.jpg" width="1000" height="300"><br/>
图1. Cifar-10生成图像对比 图1. Cifar-10生成图像对比
</p> </p>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册