未验证 提交 efac2fa4 编写于 作者: D daminglu 提交者: GitHub

07 label_semantic_roles (#548)

上级 11903b95
此差异已折叠。
import math, os import math, os
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle
import paddle.v2.dataset.conll05 as conll05 import paddle.v2.dataset.conll05 as conll05
import paddle.v2.evaluator as evaluator import paddle.fluid as fluid
import time
with_gpu = os.getenv('WITH_GPU', '0') != '0' with_gpu = os.getenv('WITH_GPU', '0') != '0'
word_dict, verb_dict, label_dict = conll05.get_dict() word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict) word_dict_len = len(word_dict)
label_dict_len = len(label_dict) label_dict_len = len(label_dict)
pred_len = len(verb_dict) pred_dict_len = len(verb_dict)
mark_dict_len = 2 mark_dict_len = 2
word_dim = 32 word_dim = 32
mark_dim = 5 mark_dim = 5
hidden_dim = 512 hidden_dim = 512
depth = 8 depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3 mix_hidden_lr = 1e-3
IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 10
def d_type(size): embedding_name = 'emb'
return paddle.data_type.integer_value_sequence(size)
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def db_lstm():
#8 features
word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))
ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)
predicate_embedding = paddle.layer.embedding( def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
size=word_dim, **ignored):
# 8 features
predicate_embedding = fluid.layers.embedding(
input=predicate, input=predicate,
param_attr=paddle.attr.Param(name='vemb', initial_std=default_std)) size=[pred_dict_len, word_dim],
mark_embedding = paddle.layer.embedding( dtype='float32',
size=mark_dim, input=mark, param_attr=std_0) is_sparse=IS_SPARSE,
param_attr='vemb')
mark_embedding = fluid.layers.embedding(
input=mark,
size=[mark_dict_len, mark_dim],
dtype='float32',
is_sparse=IS_SPARSE)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2] word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [ emb_layers = [
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para) fluid.layers.embedding(
for x in word_input size=[word_dict_len, word_dim],
input=x,
param_attr=fluid.ParamAttr(
name=embedding_name, trainable=False)) for x in word_input
] ]
emb_layers.append(predicate_embedding) emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding) emb_layers.append(mark_embedding)
hidden_0 = paddle.layer.mixed( hidden_0_layers = [
size=hidden_dim, fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
bias_attr=std_default, for emb in emb_layers
input=[ ]
paddle.layer.full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])
lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0) hidden_0 = fluid.layers.sums(input=hidden_0_layers)
hidden_para_attr = paddle.attr.Param(
initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = paddle.layer.lstmemory( lstm_0 = fluid.layers.dynamic_lstm(
input=hidden_0, input=hidden_0,
act=paddle.activation.Relu(), size=hidden_dim,
gate_act=paddle.activation.Sigmoid(), candidate_activation='relu',
state_act=paddle.activation.Sigmoid(), gate_activation='sigmoid',
bias_attr=std_0, cell_activation='sigmoid')
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges # stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0] input_tmp = [hidden_0, lstm_0]
for i in range(1, depth): for i in range(1, depth):
mix_hidden = paddle.layer.mixed( mix_hidden = fluid.layers.sums(input=[
size=hidden_dim, fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
bias_attr=std_default, fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
input=[ ])
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr), lstm = fluid.layers.dynamic_lstm(
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])
lstm = paddle.layer.lstmemory(
input=mix_hidden, input=mix_hidden,
act=paddle.activation.Relu(), size=hidden_dim,
gate_act=paddle.activation.Sigmoid(), candidate_activation='relu',
state_act=paddle.activation.Sigmoid(), gate_activation='sigmoid',
reverse=((i % 2) == 1), cell_activation='sigmoid',
bias_attr=std_0, is_reverse=((i % 2) == 1))
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm] input_tmp = [mix_hidden, lstm]
feature_out = paddle.layer.mixed( feature_out = fluid.layers.sums(input=[
size=label_dict_len, fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
bias_attr=std_default, fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
input=[ ])
paddle.layer.full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
paddle.layer.full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )
return feature_out return feature_out
def load_parameter(file_name, h, w): def train(use_cuda, save_dirname=None, is_local=True):
with open(file_name, 'rb') as f: # define network topology
f.read(16) # skip header. word = fluid.layers.data(
return np.fromfile(f, dtype=np.float32).reshape(h, w) name='word_data', shape=[1], dtype='int64', lod_level=1)
predicate = fluid.layers.data(
name='verb_data', shape=[1], dtype='int64', lod_level=1)
def main(): ctx_n2 = fluid.layers.data(
paddle.init(use_gpu=with_gpu, trainer_count=1) name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
ctx_n1 = fluid.layers.data(
name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
ctx_0 = fluid.layers.data(
name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
ctx_p1 = fluid.layers.data(
name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
ctx_p2 = fluid.layers.data(
name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
mark = fluid.layers.data(
name='mark_data', shape=[1], dtype='int64', lod_level=1)
# define network topology # define network topology
feature_out = db_lstm() feature_out = db_lstm(**locals())
target = paddle.layer.data(name='target', type=d_type(label_dict_len)) target = fluid.layers.data(
crf_cost = paddle.layer.crf( name='target', shape=[1], dtype='int64', lod_level=1)
size=label_dict_len, crf_cost = fluid.layers.linear_chain_crf(
input=feature_out, input=feature_out,
label=target, label=target,
param_attr=paddle.attr.Param( param_attr=fluid.ParamAttr(
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr)) name='crfw', learning_rate=mix_hidden_lr))
avg_cost = fluid.layers.mean(crf_cost)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=0.01,
decay_steps=100000,
decay_rate=0.5,
staircase=True))
sgd_optimizer.minimize(avg_cost)
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.conll05.test(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder = fluid.DataFeeder(
feed_list=[
word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
],
place=place)
exe = fluid.Executor(place)
def train_loop(main_program):
exe.run(fluid.default_startup_program())
embedding_param = fluid.global_scope().find_var(
embedding_name).get_tensor()
embedding_param.set(
load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
place)
start_time = time.time()
batch_id = 0
for pass_id in xrange(PASS_NUM):
for data in train_data():
cost = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[avg_cost])
cost = cost[0]
if batch_id % 10 == 0:
print("avg_cost:" + str(cost))
if batch_id != 0:
print("second per batch: " + str((time.time(
) - start_time) / batch_id))
# Set the threshold low to speed up the CI test
if float(cost) < 60.0:
if save_dirname is not None:
# TODO(liuyiqun): Change the target to crf_decode
fluid.io.save_inference_model(save_dirname, [
'word_data', 'verb_data', 'ctx_n2_data',
'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
'ctx_p2_data', 'mark_data'
], [feature_out], exe)
return
batch_id = batch_id + 1
train_loop(fluid.default_main_program())
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be fed
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# Setup inputs by creating LoDTensors to represent sequences of words.
# Here each word is the basic element of these LoDTensors and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensors will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod = [[3, 4, 2]]
base_shape = [1]
# The range of random integers is [low, high]
word = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
pred = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=pred_dict_len - 1)
ctx_n2 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_n1 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_0 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_p1 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_p2 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
mark = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=mark_dict_len - 1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == 'word_data'
assert feed_target_names[1] == 'verb_data'
assert feed_target_names[2] == 'ctx_n2_data'
assert feed_target_names[3] == 'ctx_n1_data'
assert feed_target_names[4] == 'ctx_0_data'
assert feed_target_names[5] == 'ctx_p1_data'
assert feed_target_names[6] == 'ctx_p2_data'
assert feed_target_names[7] == 'mark_data'
results = exe.run(inference_program,
feed={
feed_target_names[0]: word,
feed_target_names[1]: pred,
feed_target_names[2]: ctx_n2,
feed_target_names[3]: ctx_n1,
feed_target_names[4]: ctx_0,
feed_target_names[5]: ctx_p1,
feed_target_names[6]: ctx_p2,
feed_target_names[7]: mark
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
def main(use_cuda, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
# Directory for saving the trained model
save_dirname = "label_semantic_roles.inference.model"
train(use_cuda, save_dirname, is_local)
infer(use_cuda, save_dirname)
main(use_cuda=False)
crf_dec = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
label=target,
param_attr=paddle.attr.Param(name='crfw'))
evaluator.sum(input=crf_dec)
# create parameters
parameters = paddle.parameters.create(crf_cost)
parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))
# create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0,
learning_rate=2e-2,
regularization=paddle.optimizer.L2Regularization(rate=8e-4),
model_average=paddle.optimizer.ModelAverage(
average_window=0.5, max_average_window=10000), )
trainer = paddle.trainer.SGD(
cost=crf_cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=crf_dec)
reader = paddle.batch(
paddle.reader.shuffle(conll05.test(), buf_size=8192), batch_size=10)
test_reader = paddle.batch(
paddle.reader.shuffle(conll05.test(), buf_size=8192), batch_size=10)
feeding = {
'word_data': 0,
'ctx_n2_data': 1,
'ctx_n1_data': 2,
'ctx_0_data': 3,
'ctx_p1_data': 4,
'ctx_p2_data': 5,
'verb_data': 6,
'mark_data': 7,
'target': 8
}
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, Batch %d, Cost %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
if event.batch_id % 1000 == 0:
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, Batch %d, %s" % (
event.pass_id, event.batch_id, result.metrics)
if isinstance(event, paddle.event.EndPass):
# save parameters
with open('params_pass_%d.tar' % event.pass_id, 'w') as f:
trainer.save_parameter_to_tar(f)
result = trainer.test(reader=test_reader, feeding=feeding)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
trainer.train(
reader=reader,
event_handler=event_handler,
num_passes=1,
feeding=feeding)
test_creator = paddle.dataset.conll05.test()
test_data = []
for item in test_creator():
test_data.append(item[0:8])
if len(test_data) == 1:
break
predict = paddle.layer.crf_decoding(
size=label_dict_len,
input=feature_out,
param_attr=paddle.attr.Param(name='crfw'))
probs = paddle.infer(
output_layer=predict,
parameters=parameters,
input=test_data,
feeding=feeding,
field='id')
assert len(probs) == len(test_data[0][0])
labels_reverse = {}
for (k, v) in label_dict.items():
labels_reverse[v] = k
pre_lab = [labels_reverse[i] for i in probs]
print pre_lab
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册