From dc53e93d4b4cc2e4e7d9c43df1e410b974ce89d8 Mon Sep 17 00:00:00 2001 From: Luo Tao Date: Fri, 19 May 2017 16:26:58 +0800 Subject: [PATCH] remove apache license, and fix links --- 01.fit_a_line/README.cn.md | 2 +- 01.fit_a_line/README.md | 2 +- 01.fit_a_line/index.cn.html | 2 +- 01.fit_a_line/index.html | 2 +- 02.recognize_digits/README.cn.md | 2 +- 02.recognize_digits/README.md | 2 +- 02.recognize_digits/index.cn.html | 2 +- 02.recognize_digits/index.html | 2 +- 03.image_classification/README.cn.md | 2 +- 03.image_classification/README.md | 2 +- 03.image_classification/index.cn.html | 2 +- 03.image_classification/index.html | 2 +- 04.word2vec/README.cn.md | 2 +- 04.word2vec/README.md | 2 +- 04.word2vec/index.cn.html | 2 +- 04.word2vec/index.html | 2 +- 05.recommender_system/README.cn.md | 2 +- 05.recommender_system/README.md | 2 +- 05.recommender_system/index.cn.html | 2 +- 05.recommender_system/index.html | 2 +- 06.understand_sentiment/README.cn.md | 2 +- 06.understand_sentiment/README.md | 2 +- 06.understand_sentiment/index.cn.html | 2 +- 06.understand_sentiment/index.html | 2 +- 07.label_semantic_roles/README.cn.md | 2 +- 07.label_semantic_roles/README.md | 2 +- 07.label_semantic_roles/index.cn.html | 2 +- 07.label_semantic_roles/index.html | 2 +- 08.machine_translation/README.cn.md | 2 +- 08.machine_translation/README.md | 2 +- 08.machine_translation/index.cn.html | 2 +- 08.machine_translation/index.html | 2 +- README.cn.md | 1 - README.md | 1 - 34 files changed, 32 insertions(+), 34 deletions(-) diff --git a/01.fit_a_line/README.cn.md b/01.fit_a_line/README.cn.md index 4595007..e61e07a 100644 --- a/01.fit_a_line/README.cn.md +++ b/01.fit_a_line/README.cn.md @@ -1,7 +1,7 @@ # 线性回归 让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。 -本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md#运行这本书)。 +本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书)。 ## 背景介绍 给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即 diff --git a/01.fit_a_line/README.md b/01.fit_a_line/README.md index 31341db..bfd72c2 100644 --- a/01.fit_a_line/README.md +++ b/01.fit_a_line/README.md @@ -1,7 +1,7 @@ # Linear Regression Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example. -The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book). +The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book). ## Problem Setup Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity. diff --git a/01.fit_a_line/index.cn.html b/01.fit_a_line/index.cn.html index cac6ce7..de2f266 100644 --- a/01.fit_a_line/index.cn.html +++ b/01.fit_a_line/index.cn.html @@ -43,7 +43,7 @@ # 线性回归 让我们从经典的线性回归(Linear Regression \[[1](#参考文献)\])模型开始这份教程。在这一章里,你将使用真实的数据集建立起一个房价预测模型,并且了解到机器学习中的若干重要概念。 -本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md#运行这本书)。 +本教程源代码目录在[book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书)。 ## 背景介绍 给定一个大小为$n$的数据集 ${\{y_{i}, x_{i1}, ..., x_{id}\}}_{i=1}^{n}$,其中$x_{i1}, \ldots, x_{id}$是第$i$个样本$d$个属性上的取值,$y_i$是该样本待预测的目标。线性回归模型假设目标$y_i$可以被属性间的线性组合描述,即 diff --git a/01.fit_a_line/index.html b/01.fit_a_line/index.html index fdb8c89..e8ffa31 100644 --- a/01.fit_a_line/index.html +++ b/01.fit_a_line/index.html @@ -43,7 +43,7 @@ # Linear Regression Let us begin the tutorial with a classical problem called Linear Regression \[[1](#References)\]. In this chapter, we will train a model from a realistic dataset to predict home prices. Some important concepts in Machine Learning will be covered through this example. -The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book). +The source code for this tutorial lives on [book/fit_a_line](https://github.com/PaddlePaddle/book/tree/develop/01.fit_a_line). For instructions on getting started with PaddlePaddle, see [PaddlePaddle installation guide](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book). ## Problem Setup Suppose we have a dataset of $n$ real estate properties. These real estate properties will be referred to as *homes* in this chapter for clarity. diff --git a/02.recognize_digits/README.cn.md b/02.recognize_digits/README.cn.md index 17773c0..f9f7ae1 100644 --- a/02.recognize_digits/README.cn.md +++ b/02.recognize_digits/README.cn.md @@ -1,6 +1,6 @@ # 识别数字 -本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.md#运行这本书)。 +本教程源代码目录在[book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits), 初次使用请参考PaddlePaddle[安装教程](https://github.com/PaddlePaddle/book/blob/develop/README.cn.md#运行这本书)。 ## 背景介绍 当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 [MNIST](http://yann.lecun.com/exdb/mnist/) 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,标签则对应着0~9的10个数字。每张图片都经过了大小归一化和居中处理。 diff --git a/02.recognize_digits/README.md b/02.recognize_digits/README.md index dde36a0..f155898 100644 --- a/02.recognize_digits/README.md +++ b/02.recognize_digits/README.md @@ -1,6 +1,6 @@ # Recognize Digits -The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.en.md#running-the-book). +The source code for this tutorial is live at [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/02.recognize_digits). For instructions on getting started with Paddle, please refer to [installation instructions](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book). ## Introduction When one learns to program, the first task is usually to write a program that prints "Hello World!". In Machine Learning or Deep Learning, the equivalent task is to train a model to recognize hand-written digits on the dataset [MNIST](http://yann.lecun.com/exdb/mnist/). Handwriting recognition is a classic image classification problem. The problem is relatively easy and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains images of handwritten digits and their corresponding labels (Fig. 1). The input image is a $28\times28$ matrix, and the label is one of the digits from $0$ to $9$. All images are normalized, meaning that they are both rescaled and centered. diff --git a/02.recognize_digits/index.cn.html b/02.recognize_digits/index.cn.html index 60d7c85..18372f0 100644 --- a/02.recognize_digits/index.cn.html +++ b/02.recognize_digits/index.cn.html @@ -42,7 +42,7 @@