提交 9f5d2171 编写于 作者: D dzhwinter

config with gpu

上级 e75fd183
import os
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.dataset.uci_housing as uci_housing import paddle.v2.dataset.uci_housing as uci_housing
with_gpu = os.getenv('WITH_GPU', '0') != '0'
def main(): def main():
# init # init
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=with_gpu, trainer_count=1)
# network config # network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
......
...@@ -3,6 +3,7 @@ from PIL import Image ...@@ -3,6 +3,7 @@ from PIL import Image
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
with_gpu = os.getenv('WITH_GPU', '0') != '0'
def softmax_regression(img): def softmax_regression(img):
predict = paddle.layer.fc( predict = paddle.layer.fc(
...@@ -49,7 +50,7 @@ def convolutional_neural_network(img): ...@@ -49,7 +50,7 @@ def convolutional_neural_network(img):
def main(): def main():
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=with_gpu, trainer_count=1)
# define network topology # define network topology
images = paddle.layer.data( images = paddle.layer.data(
......
...@@ -12,20 +12,21 @@ ...@@ -12,20 +12,21 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License # limitations under the License
import sys import sys, os
import paddle.v2 as paddle import paddle.v2 as paddle
from vgg import vgg_bn_drop from vgg import vgg_bn_drop
from resnet import resnet_cifar10 from resnet import resnet_cifar10
with_gpu = os.getenv('WITH_GPU', '0') != '0'
def main(): def main():
datadim = 3 * 32 * 32 datadim = 3 * 32 * 32
classdim = 10 classdim = 10
# PaddlePaddle init # PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=with_gpu, trainer_count=1)
image = paddle.layer.data( image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(datadim)) name="image", type=paddle.data_type.dense_vector(datadim))
......
import math import math, os
import paddle.v2 as paddle import paddle.v2 as paddle
with_gpu = os.getenv('WITH_GPU', '0') != '0'
embsize = 32 embsize = 32
hiddensize = 256 hiddensize = 256
N = 5 N = 5
...@@ -17,7 +19,7 @@ def wordemb(inlayer): ...@@ -17,7 +19,7 @@ def wordemb(inlayer):
def main(): def main():
paddle.init(use_gpu=False, trainer_count=3) paddle.init(use_gpu=with_gpu, trainer_count=3)
word_dict = paddle.dataset.imikolov.build_dict() word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict) dict_size = len(word_dict)
# Every layer takes integer value of range [0, dict_size) # Every layer takes integer value of range [0, dict_size)
......
import paddle.v2 as paddle import paddle.v2 as paddle
import cPickle import cPickle
import copy import copy
import os
with_gpu = os.getenv('WITH_GPU', '0') != '0'
def get_usr_combined_features(): def get_usr_combined_features():
uid = paddle.layer.data( uid = paddle.layer.data(
...@@ -67,7 +69,7 @@ def get_mov_combined_features(): ...@@ -67,7 +69,7 @@ def get_mov_combined_features():
def main(): def main():
paddle.init(use_gpu=False) paddle.init(use_gpu=with_gpu)
usr_combined_features = get_usr_combined_features() usr_combined_features = get_usr_combined_features()
mov_combined_features = get_mov_combined_features() mov_combined_features = get_mov_combined_features()
inference = paddle.layer.cos_sim( inference = paddle.layer.cos_sim(
......
...@@ -12,9 +12,10 @@ ...@@ -12,9 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import sys import sys, os
import paddle.v2 as paddle import paddle.v2 as paddle
with_gpu = os.getenv('WITH_GPU', '0') != '0'
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
data = paddle.layer.data("word", data = paddle.layer.data("word",
...@@ -102,7 +103,7 @@ def stacked_lstm_net(input_dim, ...@@ -102,7 +103,7 @@ def stacked_lstm_net(input_dim,
if __name__ == '__main__': if __name__ == '__main__':
# init # init
paddle.init(use_gpu=False) paddle.init(use_gpu=with_gpu)
#data #data
print 'load dictionary...' print 'load dictionary...'
......
import math import math, os
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05 import paddle.v2.dataset.conll05 as conll05
import paddle.v2.evaluator as evaluator import paddle.v2.evaluator as evaluator
with_gpu = os.getenv('WITH_GPU', '0') != '0'
word_dict, verb_dict, label_dict = conll05.get_dict() word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict) word_dict_len = len(word_dict)
label_dict_len = len(label_dict) label_dict_len = len(label_dict)
...@@ -118,7 +120,7 @@ def load_parameter(file_name, h, w): ...@@ -118,7 +120,7 @@ def load_parameter(file_name, h, w):
def main(): def main():
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=with_gpu, trainer_count=1)
# define network topology # define network topology
feature_out = db_lstm() feature_out = db_lstm()
......
import sys import sys, os
import numpy as np import numpy as np
import paddle.v2 as paddle import paddle.v2 as paddle
with_gpu = os.getenv('WITH_GPU', '0') != '0'
def save_model(parameters, save_path): def save_model(parameters, save_path):
with open(save_path, 'w') as f: with open(save_path, 'w') as f:
...@@ -135,7 +135,7 @@ def seq_to_seq_net(source_dict_dim, ...@@ -135,7 +135,7 @@ def seq_to_seq_net(source_dict_dim,
def main(): def main():
paddle.init(use_gpu=False, trainer_count=1) paddle.init(use_gpu=with_gpu, trainer_count=1)
is_generating = False is_generating = False
# source and target dict dim. # source and target dict dim.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册