diff --git a/01.fit_a_line/train.py b/01.fit_a_line/train.py index 255180d3c4322e8dd201e96917e288e3ee209d61..d18ab4549f57f294c43c91e67fbceca69115c57f 100644 --- a/01.fit_a_line/train.py +++ b/01.fit_a_line/train.py @@ -1,10 +1,12 @@ +import os import paddle.v2 as paddle import paddle.v2.dataset.uci_housing as uci_housing +with_gpu = os.getenv('WITH_GPU', '0') != '0' def main(): # init - paddle.init(use_gpu=False, trainer_count=1) + paddle.init(use_gpu=with_gpu, trainer_count=1) # network config x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) diff --git a/02.recognize_digits/train.py b/02.recognize_digits/train.py index 52f09b78c781868e55655bc05bf8aa66926304a3..dd0d646f7f62794a04788f2ec76957dd81c9b58e 100644 --- a/02.recognize_digits/train.py +++ b/02.recognize_digits/train.py @@ -3,6 +3,7 @@ from PIL import Image import numpy as np import paddle.v2 as paddle +with_gpu = os.getenv('WITH_GPU', '0') != '0' def softmax_regression(img): predict = paddle.layer.fc( @@ -49,7 +50,7 @@ def convolutional_neural_network(img): def main(): - paddle.init(use_gpu=False, trainer_count=1) + paddle.init(use_gpu=with_gpu, trainer_count=1) # define network topology images = paddle.layer.data( diff --git a/03.image_classification/train.py b/03.image_classification/train.py index 0c800308ed2b19a86e27b5114b53a8b69eb7a77c..567dbbf1ad2158de1434be0911bb2bc8b6aca4a0 100644 --- a/03.image_classification/train.py +++ b/03.image_classification/train.py @@ -12,20 +12,21 @@ # See the License for the specific language governing permissions and # limitations under the License -import sys +import sys, os import paddle.v2 as paddle from vgg import vgg_bn_drop from resnet import resnet_cifar10 +with_gpu = os.getenv('WITH_GPU', '0') != '0' def main(): datadim = 3 * 32 * 32 classdim = 10 # PaddlePaddle init - paddle.init(use_gpu=False, trainer_count=1) + paddle.init(use_gpu=with_gpu, trainer_count=1) image = paddle.layer.data( name="image", type=paddle.data_type.dense_vector(datadim)) diff --git a/04.word2vec/train.py b/04.word2vec/train.py index eb596673ce8ad55dfe8c5c258beb344e825b7c25..550ba0093d62f50b674eef3663f13323f57dbd3c 100644 --- a/04.word2vec/train.py +++ b/04.word2vec/train.py @@ -1,7 +1,9 @@ -import math +import math, os import paddle.v2 as paddle +with_gpu = os.getenv('WITH_GPU', '0') != '0' + embsize = 32 hiddensize = 256 N = 5 @@ -17,7 +19,7 @@ def wordemb(inlayer): def main(): - paddle.init(use_gpu=False, trainer_count=3) + paddle.init(use_gpu=with_gpu, trainer_count=3) word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) # Every layer takes integer value of range [0, dict_size) diff --git a/05.recommender_system/train.py b/05.recommender_system/train.py index cb549e49abca240ea3268bc443aa37568c724cbf..cfe234dad7bd1fb7cb22de889e3a235235781b49 100644 --- a/05.recommender_system/train.py +++ b/05.recommender_system/train.py @@ -1,7 +1,9 @@ import paddle.v2 as paddle import cPickle import copy +import os +with_gpu = os.getenv('WITH_GPU', '0') != '0' def get_usr_combined_features(): uid = paddle.layer.data( @@ -67,7 +69,7 @@ def get_mov_combined_features(): def main(): - paddle.init(use_gpu=False) + paddle.init(use_gpu=with_gpu) usr_combined_features = get_usr_combined_features() mov_combined_features = get_mov_combined_features() inference = paddle.layer.cos_sim( diff --git a/06.understand_sentiment/train.py b/06.understand_sentiment/train.py index 7878f00b6401ed0e6a0863d2cec129b6e51b163d..8e967c81ccbd5e9f31235ba8a58e0bf11bda6b98 100644 --- a/06.understand_sentiment/train.py +++ b/06.understand_sentiment/train.py @@ -12,9 +12,10 @@ # See the License for the specific language governing permissions and # limitations under the License. -import sys +import sys, os import paddle.v2 as paddle +with_gpu = os.getenv('WITH_GPU', '0') != '0' def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128): data = paddle.layer.data("word", @@ -102,7 +103,7 @@ def stacked_lstm_net(input_dim, if __name__ == '__main__': # init - paddle.init(use_gpu=False) + paddle.init(use_gpu=with_gpu) #data print 'load dictionary...' diff --git a/07.label_semantic_roles/train.py b/07.label_semantic_roles/train.py index 94d751dffa5edd620793e8818f19e98477212cdc..d8a3698fcc0c56258de0d9bf231bbd6d63a4315f 100644 --- a/07.label_semantic_roles/train.py +++ b/07.label_semantic_roles/train.py @@ -1,9 +1,11 @@ -import math +import math, os import numpy as np import paddle.v2 as paddle import paddle.v2.dataset.conll05 as conll05 import paddle.v2.evaluator as evaluator +with_gpu = os.getenv('WITH_GPU', '0') != '0' + word_dict, verb_dict, label_dict = conll05.get_dict() word_dict_len = len(word_dict) label_dict_len = len(label_dict) @@ -118,7 +120,7 @@ def load_parameter(file_name, h, w): def main(): - paddle.init(use_gpu=False, trainer_count=1) + paddle.init(use_gpu=with_gpu, trainer_count=1) # define network topology feature_out = db_lstm() diff --git a/08.machine_translation/train.py b/08.machine_translation/train.py index 6f857b0cad9c23bee62de3ad85770d8d1cf538a9..54c74924a859a5fcefb5c2590f584b454e101eb1 100644 --- a/08.machine_translation/train.py +++ b/08.machine_translation/train.py @@ -1,8 +1,8 @@ -import sys +import sys, os import numpy as np - import paddle.v2 as paddle +with_gpu = os.getenv('WITH_GPU', '0') != '0' def save_model(parameters, save_path): with open(save_path, 'w') as f: @@ -135,7 +135,7 @@ def seq_to_seq_net(source_dict_dim, def main(): - paddle.init(use_gpu=False, trainer_count=1) + paddle.init(use_gpu=with_gpu, trainer_count=1) is_generating = False # source and target dict dim.