Source code of this chapter is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits), For the first-time use, please refer to PaddlePaddle[installation instructions](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html)。
Source code of this chapter is under [book/recognize_digits](https://github.com/PaddlePaddle/book/tree/develop/recognize_digits), For the first-time use, please refer to PaddlePaddle[installation instructions](http://www.paddlepaddle.org/doc_cn/build_and_install/index.html)。
When we study programming, the first program is usually printing “Hello World.” In Machine Learning, or Deep Learning, this is hand-written digit recognition with [MNIST](http://yann.lecun.com/exdb/mnist/) dataset. Handwriting recognition is a typical image classification problem. The problem is relatively easy, and MNIST is a complete dataset. As a simple Computer Vision dataset, MNIST contains hand-written digits and corresponding labels (Fig. 1). An image is a 28x28 matrix, and a label corresponds to one of the 10 digits from 0 to 9. Each image is normalized in size and centered.