提交 41f50012 编写于 作者: L Li Fuchen 提交者: Jiabin Yang

Modify the code to support python3. (#793)

Modify the code to support python3: fix problem in book05 doc and code
上级 bc32e864
...@@ -134,9 +134,10 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da ...@@ -134,9 +134,10 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da
```python ```python
from __future__ import print_function
import paddle import paddle
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
...@@ -152,7 +153,7 @@ print movie_info.values()[0] ...@@ -152,7 +153,7 @@ print movie_info.values()[0]
```python ```python
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])> <MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
...@@ -163,7 +164,7 @@ print movie_info.values()[0] ...@@ -163,7 +164,7 @@ print movie_info.values()[0]
```python ```python
user_info = paddle.dataset.movielens.user_info() user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0] print(list(user_info.values())[0])
``` ```
<UserInfo id(1), gender(F), age(1), job(10)> <UserInfo id(1), gender(F), age(1), job(10)>
...@@ -216,7 +217,7 @@ train_set_creator = paddle.dataset.movielens.train() ...@@ -216,7 +217,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator()) train_sample = next(train_set_creator())
uid = train_sample[0] uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())] mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]) print ("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
``` ```
User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest ), categories(['Drama'])> with Score [5.0] User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest ), categories(['Drama'])> with Score [5.0]
...@@ -232,7 +233,6 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id] ...@@ -232,7 +233,6 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id]
```python ```python
from __future__ import print_function
import math import math
import sys import sys
import numpy as np import numpy as np
......
...@@ -120,9 +120,10 @@ Paddle provides modules for automatically loading data in the API. The data modu ...@@ -120,9 +120,10 @@ Paddle provides modules for automatically loading data in the API. The data modu
```python ```python
from __future__ import print_function
import paddle import paddle
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
...@@ -138,7 +139,7 @@ For example, one of the movie features is: ...@@ -138,7 +139,7 @@ For example, one of the movie features is:
```python ```python
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])> <MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
...@@ -149,7 +150,7 @@ This means that the movie id is 1, and the title is 《Toy Story》, which is di ...@@ -149,7 +150,7 @@ This means that the movie id is 1, and the title is 《Toy Story》, which is di
```python ```python
user_info = paddle.dataset.movielens.user_info() user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0] print(list(user_info.values())[0])
``` ```
<UserInfo id(1), gender(F), age(1), job(10)> <UserInfo id(1), gender(F), age(1), job(10)>
...@@ -202,7 +203,7 @@ train_set_creator = paddle.dataset.movielens.train() ...@@ -202,7 +203,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator()) train_sample = next(train_set_creator())
uid = train_sample[0] uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())] mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]) print("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
``` ```
```python ```python
...@@ -220,7 +221,6 @@ Below we begin to configure the model based on the form of the input data. First ...@@ -220,7 +221,6 @@ Below we begin to configure the model based on the form of the input data. First
```python ```python
from __future__ import print_function
import math import math
import sys import sys
import numpy as np import numpy as np
......
...@@ -176,9 +176,10 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da ...@@ -176,9 +176,10 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da
```python ```python
from __future__ import print_function
import paddle import paddle
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
...@@ -194,7 +195,7 @@ print movie_info.values()[0] ...@@ -194,7 +195,7 @@ print movie_info.values()[0]
```python ```python
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])> <MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
...@@ -205,7 +206,7 @@ print movie_info.values()[0] ...@@ -205,7 +206,7 @@ print movie_info.values()[0]
```python ```python
user_info = paddle.dataset.movielens.user_info() user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0] print(list(user_info.values())[0])
``` ```
<UserInfo id(1), gender(F), age(1), job(10)> <UserInfo id(1), gender(F), age(1), job(10)>
...@@ -258,7 +259,7 @@ train_set_creator = paddle.dataset.movielens.train() ...@@ -258,7 +259,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator()) train_sample = next(train_set_creator())
uid = train_sample[0] uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())] mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]) print ("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
``` ```
User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest ), categories(['Drama'])> with Score [5.0] User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest ), categories(['Drama'])> with Score [5.0]
...@@ -274,7 +275,6 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id] ...@@ -274,7 +275,6 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id]
```python ```python
from __future__ import print_function
import math import math
import sys import sys
import numpy as np import numpy as np
......
...@@ -162,9 +162,10 @@ Paddle provides modules for automatically loading data in the API. The data modu ...@@ -162,9 +162,10 @@ Paddle provides modules for automatically loading data in the API. The data modu
```python ```python
from __future__ import print_function
import paddle import paddle
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
...@@ -180,7 +181,7 @@ For example, one of the movie features is: ...@@ -180,7 +181,7 @@ For example, one of the movie features is:
```python ```python
movie_info = paddle.dataset.movielens.movie_info() movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0] print(list(movie_info.values())[0])
``` ```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])> <MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
...@@ -191,7 +192,7 @@ This means that the movie id is 1, and the title is 《Toy Story》, which is di ...@@ -191,7 +192,7 @@ This means that the movie id is 1, and the title is 《Toy Story》, which is di
```python ```python
user_info = paddle.dataset.movielens.user_info() user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0] print(list(user_info.values())[0])
``` ```
<UserInfo id(1), gender(F), age(1), job(10)> <UserInfo id(1), gender(F), age(1), job(10)>
...@@ -244,7 +245,7 @@ train_set_creator = paddle.dataset.movielens.train() ...@@ -244,7 +245,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator()) train_sample = next(train_set_creator())
uid = train_sample[0] uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())] mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]) print("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
``` ```
```python ```python
...@@ -262,7 +263,6 @@ Below we begin to configure the model based on the form of the input data. First ...@@ -262,7 +263,6 @@ Below we begin to configure the model based on the form of the input data. First
```python ```python
from __future__ import print_function
import math import math
import sys import sys
import numpy as np import numpy as np
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册