提交 41f50012 编写于 作者: L Li Fuchen 提交者: Jiabin Yang

Modify the code to support python3. (#793)

Modify the code to support python3: fix problem in book05 doc and code
上级 bc32e864
......@@ -134,9 +134,10 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da
```python
from __future__ import print_function
import paddle
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
......@@ -152,7 +153,7 @@ print movie_info.values()[0]
```python
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
......@@ -163,7 +164,7 @@ print movie_info.values()[0]
```python
user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0]
print(list(user_info.values())[0])
```
<UserInfo id(1), gender(F), age(1), job(10)>
......@@ -216,7 +217,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator())
uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1])
print ("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
```
User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest ), categories(['Drama'])> with Score [5.0]
......@@ -232,7 +233,6 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id]
```python
from __future__ import print_function
import math
import sys
import numpy as np
......
......@@ -120,9 +120,10 @@ Paddle provides modules for automatically loading data in the API. The data modu
```python
from __future__ import print_function
import paddle
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
......@@ -138,7 +139,7 @@ For example, one of the movie features is:
```python
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
......@@ -149,7 +150,7 @@ This means that the movie id is 1, and the title is 《Toy Story》, which is di
```python
user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0]
print(list(user_info.values())[0])
```
<UserInfo id(1), gender(F), age(1), job(10)>
......@@ -202,7 +203,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator())
uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1])
print("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
```
```python
......@@ -220,7 +221,6 @@ Below we begin to configure the model based on the form of the input data. First
```python
from __future__ import print_function
import math
import sys
import numpy as np
......
......@@ -176,9 +176,10 @@ Paddle在API中提供了自动加载数据的模块。数据模块为 `paddle.da
```python
from __future__ import print_function
import paddle
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
......@@ -194,7 +195,7 @@ print movie_info.values()[0]
```python
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
......@@ -205,7 +206,7 @@ print movie_info.values()[0]
```python
user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0]
print(list(user_info.values())[0])
```
<UserInfo id(1), gender(F), age(1), job(10)>
......@@ -258,7 +259,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator())
uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1])
print ("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
```
User <UserInfo id(1), gender(F), age(1), job(10)> rates Movie <MovieInfo id(1193), title(One Flew Over the Cuckoo's Nest ), categories(['Drama'])> with Score [5.0]
......@@ -274,7 +275,6 @@ print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id]
```python
from __future__ import print_function
import math
import sys
import numpy as np
......
......@@ -162,9 +162,10 @@ Paddle provides modules for automatically loading data in the API. The data modu
```python
from __future__ import print_function
import paddle
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
......@@ -180,7 +181,7 @@ For example, one of the movie features is:
```python
movie_info = paddle.dataset.movielens.movie_info()
print movie_info.values()[0]
print(list(movie_info.values())[0])
```
<MovieInfo id(1), title(Toy Story ), categories(['Animation', "Children's", 'Comedy'])>
......@@ -191,7 +192,7 @@ This means that the movie id is 1, and the title is 《Toy Story》, which is di
```python
user_info = paddle.dataset.movielens.user_info()
print user_info.values()[0]
print(list(user_info.values())[0])
```
<UserInfo id(1), gender(F), age(1), job(10)>
......@@ -244,7 +245,7 @@ train_set_creator = paddle.dataset.movielens.train()
train_sample = next(train_set_creator())
uid = train_sample[0]
mov_id = train_sample[len(user_info[uid].value())]
print "User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1])
print("User %s rates Movie %s with Score %s"%(user_info[uid], movie_info[mov_id], train_sample[-1]))
```
```python
......@@ -262,7 +263,6 @@ Below we begin to configure the model based on the form of the input data. First
```python
from __future__ import print_function
import math
import sys
import numpy as np
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册