index.html 34.3 KB
Newer Older
1

Y
Yi Wang 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yi Wang 已提交
11 12 13 14 15 16
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yi Wang 已提交
18 19 20 21 22
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yi Wang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yi Wang 已提交
39 40 41 42 43 44
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Machine Translation

M
Mimee 已提交
45
The source code of this tutorial is live at [book/machine_translation](https://github.com/PaddlePaddle/book/tree/develop/08.machine_translation). Please refer to the [book running tutorial](https://github.com/PaddlePaddle/book#running-the-book) for getting started with Paddle.
Y
Yi Wang 已提交
46 47 48

## Background

49
Machine translation (MT) leverages computers to translate from one language to another. The language to be translated is referred to as the source language, while the language to be translated into is referred to as the target language. Thus, Machine translation is the process of translating from the source language to the target language. It is one of the most important research topics in the field of natural language processing.
Y
Yi Wang 已提交
50

M
Mimee 已提交
51

52
Early machine translation systems are mainly rule-based i.e. they rely on a language expert to specify the translation rules between the two languages. It is quite difficult to cover all the rules used in one language. So it is quite a challenge for language experts to specify all possible rules in two or more different languages. Hence, a major challenge in conventional machine translation has been the difficulty in obtaining a complete rule set \[[1](#references)\].
Y
Yi Wang 已提交
53 54


55
To address the aforementioned problems, statistical machine translation techniques have been developed. These techniques learn the translation rules from a large corpus, instead of being designed by a language expert. While these techniques overcome the bottleneck of knowledge acquisition, there are still quite a lot of challenges, for example:
Y
Yi Wang 已提交
56

J
julie 已提交
57
1. Human designed features cannot cover all possible linguistic variations;
58

J
julie 已提交
59
2. It is difficult to use global features;
60

J
julie 已提交
61
3. The techniques heavily rely on pre-processing techniques like word alignment, word segmentation and tokenization, rule-extraction and syntactic parsing etc. The error introduced in any of these steps could accumulate and impact translation quality.
62 63 64



65
The recent development of deep learning provides new solutions to these challenges. The two main categories for deep learning based machine translation techniques are:
66

J
julie 已提交
67
1. Techniques based on the statistical machine translation system but with some key components improved with neural networks, e.g., language model, reordering model (please refer to the left part of Figure 1);
68

J
julie 已提交
69
2. Techniques mapping from source language to target language directly using a neural network, or end-to-end neural machine translation (NMT).
Y
Yi Wang 已提交
70 71 72

<p align="center">
<img src="image/nmt_en.png" width=400><br/>
73
Figure 1. Neural Network based Machine Translation
Y
Yi Wang 已提交
74 75 76
</p>


77
This tutorial will mainly introduce an NMT model and how to use PaddlePaddle to train it.
Y
Yi Wang 已提交
78 79 80

## Illustrative Results

81
Let's consider an example of Chinese-to-English translation. The model is given the following segmented sentence in Chinese
Y
Yi Wang 已提交
82 83 84
```text
这些 是 希望 的 曙光 和 解脱 的 迹象 .
```
85
After training and with a beam-search size of 3, the generated translations are as follows:
Y
Yi Wang 已提交
86
```text
L
Luo Tao 已提交
87 88 89
0 -5.36816   These are signs of hope and relief . <e>
1 -6.23177   These are the light of hope and relief . <e>
2 -7.7914  These are the light of hope and the relief of hope . <e>
Y
Yi Wang 已提交
90
```
91 92
- The first column corresponds to the id of the generated sentence; the second column corresponds to the score of the generated sentence (in descending order), where a larger value indicates better quality; the last column corresponds to the generated sentence.
- There are two special tokens: `<e>` denotes the end of a sentence while `<unk>` denotes unknown word, i.e., a word not in the training dictionary.
Y
Yi Wang 已提交
93 94 95

## Overview of the Model

96
This section will introduce Gated Recurrent Unit (GRU), Bi-directional Recurrent Neural Network, the Encoder-Decoder framework used in NMT, attention mechanism, as well as the beam search algorithm.
Y
Yi Wang 已提交
97

98
### Gated Recurrent Unit (GRU)
Y
Yi Wang 已提交
99

100 101
We already introduced RNN and LSTM in the [Sentiment Analysis](https://github.com/PaddlePaddle/book/blob/develop/understand_sentiment/README.md) chapter.
Compared to a simple RNN, the LSTM added memory cell, input gate, forget gate and output gate. These gates combined with the memory cell greatly improve the ability to handle long-term dependencies.
Y
Yi Wang 已提交
102

M
Mimee 已提交
103
GRU\[[2](#references)\] proposed by Cho et al is a simplified LSTM and an extension of a simple RNN. It is shown in the figure below.
104 105 106
A GRU unit has only two gates:
- reset gate: when this gate is closed, the history information is discarded, i.e., the irrelevant historical information has no effect on the future output.
- update gate: it combines the input gate and the forget gate and is used to control the impact of historical information on the hidden output. The historical information is passed over when the update gate is close to 1.
Y
Yi Wang 已提交
107 108 109

<p align="center">
<img src="image/gru_en.png" width=700><br/>
110
Figure 2. A GRU Gate
Y
Yi Wang 已提交
111 112
</p>

113
Generally speaking, sequences with short distance dependencies will have an active reset gate while sequences with long distance dependency will have an active update date.
M
Mimee 已提交
114
In addition, Chung et al.\[[3](#references)\] have empirically shown that although GRU has less parameters, it has similar performance to LSTM on several different tasks.
Y
Yi Wang 已提交
115 116 117

### Bi-directional Recurrent Neural Network

M
Mimee 已提交
118
We already introduced an instance of bi-directional RNN in the [Semantic Role Labeling](https://github.com/PaddlePaddle/book/blob/develop/label_semantic_roles/README.md) chapter. Here we present another bi-directional RNN model with a different architecture proposed by Bengio et al. in \[[2](#references),[4](#references)\]. This model takes a sequence as input and outputs a fixed dimensional feature vector at each step, encoding the context information at the corresponding time step.
Y
Yi Wang 已提交
119

120
Specifically, this bi-directional RNN processes the input sequence in the original and reverse order respectively, and then concatenates the output feature vectors at each time step as the final output. Thus the output node at each time step contains information from the past and future as context. The figure below shows an unrolled bi-directional RNN. This network contains a forward RNN and backward RNN with six weight matrices: weight matrices from input to forward hidden layer and backward hidden ($W_1, W_3$), weight matrices from hidden to itself ($W_2, W_5$), matrices from forward hidden and backward hidden to output layer ($W_4, W_6$). Note that there are no connections between forward hidden and backward hidden layers.
Y
Yi Wang 已提交
121 122 123

<p align="center">
<img src="image/bi_rnn_en.png" width=450><br/>
124
Figure 3. Temporally unrolled bi-directional RNN
Y
Yi Wang 已提交
125 126 127 128
</p>

### Encoder-Decoder Framework

M
Mimee 已提交
129
The Encoder-Decoder\[[2](#references)\] framework aims to solve the mapping of a sequence to another sequence, for sequences with arbitrary lengths. The source sequence is encoded into a vector via an encoder, which is then decoded to a target sequence via a decoder by maximizing the predictive probability. Both the encoder and the decoder are typically implemented via RNN.
Y
Yi Wang 已提交
130 131 132

<p align="center">
<img src="image/encoder_decoder_en.png" width=700><br/>
133
Figure 4. Encoder-Decoder Framework
Y
Yi Wang 已提交
134 135 136 137 138 139
</p>

#### Encoder

There are three steps for encoding a sentence:

C
choijulie 已提交
140
1. One-hot vector representation of a word: Each word $x_i$ in the source sentence $x=\left \{ x_1,x_2,...,x_T \right \}$ is represented as a vector $w_i\epsilon \left \{ 0,1 \right \}^{\left | V \right |},i=1,2,...,T$   where $w_i$ has the same dimensionality as the size of the dictionary, i.e., $\left | V \right |$, and has an element of one at the location corresponding to the location of the word in the dictionary and zero elsewhere.
141

142
2. Word embedding as a representation in the low-dimensional semantic space: There are two problems with one-hot vector representation
143

J
julie 已提交
144
  * The dimensionality of the vector is typically large, leading to the curse of dimensionality;
145

J
julie 已提交
146
  * It is hard to capture the relationships between words, i.e., semantic similarities. Therefore, it is useful to project the one-hot vector into a low-dimensional semantic space as a dense vector with fixed dimensions, i.e., $s_i=Cw_i$ for the $i$-th word, with $C\epsilon R^{K\times \left | V \right |}$ as the projection matrix and $K$ is the dimensionality of the word embedding vector.
147 148

3. Encoding of the source sequence via RNN: This can be described mathematically as:
Y
Yi Wang 已提交
149

150
    $$h_i=\varnothing _\theta \left ( h_{i-1}, s_i \right )$$
151 152 153 154 155

    where
    $h_0$ is a zero vector,
    $\varnothing _\theta$ is a non-linear activation function, and
    $\mathbf{h}=\left \{ h_1,..., h_T \right \}$
156
    is the sequential encoding of the first $T$ words from the source sequence. The vector representation of the whole sentence can be represented as the encoding vector at the last time step $T$ from $\mathbf{h}$, or by temporal pooling over $\mathbf{h}$.
Y
Yi Wang 已提交
157 158


159
Bi-directional RNN can also be used in step (3) for more a complicated sentence encoding. This can be implemented using a bi-directional GRU. Forward GRU encodes the source sequence in its original order $(x_1,x_2,...,x_T)$, and generates a sequence of hidden states $(\overrightarrow{h_1},\overrightarrow{h_2},...,\overrightarrow{h_T})$. The backward GRU encodes the source sequence in reverse order, i.e., $(x_T,x_T-1,...,x_1)$ and generates $(\overleftarrow{h_1},\overleftarrow{h_2},...,\overleftarrow{h_T})$. Then for each word $x_i$, its complete hidden state is the concatenation of the corresponding hidden states from the two GRUs, i.e., $h_i=\left [ \overrightarrow{h_i^T},\overleftarrow{h_i^T} \right ]^{T}$.
Y
Yi Wang 已提交
160 161 162

<p align="center">
<img src="image/encoder_attention_en.png" width=500><br/>
163
Figure 5. Encoder using bi-directional GRU
Y
Yi Wang 已提交
164 165 166 167
</p>

#### Decoder

168
The goal of the decoder is to maximize the probability of the next correct word in the target language. The main idea is as follows:
Y
Yi Wang 已提交
169

170
1. At each time step $i$, given the encoding vector (or context vector) $c$ of the source sentence, the $i$-th word $u_i$ from the ground-truth target language and the RNN hidden state $z_i$, the next hidden state $z_{i+1}$ is computed as:
Y
Yi Wang 已提交
171 172 173 174 175 176 177 178 179 180

   $$z_{i+1}=\phi _{\theta '}\left ( c,u_i,z_i \right )$$
   where $\phi _{\theta '}$ is a non-linear activation function and $c=q\mathbf{h}$ is the context vector of the source sentence. Without using [attention](#Attention Mechanism), if the output of the [encoder](#Encoder) is the encoding vector at the last time step of the source sentence, then $c$ can be defined as $c=h_T$. $u_i$ denotes the $i$-th word from the target language sentence and $u_0$ denotes the beginning of the target language sentence (i.e., `<s>`), indicating the beginning of decoding. $z_i$ is the RNN hidden state at time step $i$ and $z_0$ is an all zero vector.

2. Calculate the probability $p_{i+1}$ for the $i+1$-th word in the target language sequence by normalizing $z_{i+1}$ using `softmax` as follows

   $$p\left ( u_{i+1}|u_{&lt;i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$

   where $W_sz_{i+1}+b_z$ scores each possible words and is then normalized via softmax to produce the probability $p_{i+1}$ for the $i+1$-th word.

181 182
3. Compute the cost accoding to $p_{i+1}$ and $u_{i+1}$.
4. Repeat Steps 1-3, until all the words in the target language sentence have been processed.
Y
Yi Wang 已提交
183

184
The generation process of machine translation is to translate the source sentence into a sentence in the target language according to a pre-trained model. There are some differences between the decoding step in generation and training. Please refer to [Beam Search Algorithm](#Beam Search Algorithm) for details.
Y
Yi Wang 已提交
185 186 187

### Attention Mechanism

188 189
There are a few problems with the fixed dimensional vector representation from the encoding stage:
  * It is very challenging to encode both the semantic and syntactic information a sentence with a fixed dimensional vector regardless of the length of the sentence.
M
Mimee 已提交
190
  * Intuitively, when translating a sentence, we typically pay more attention to the parts in the source sentence more relevant to the current translation. Moreover, the focus changes along the process of the translation. With a fixed dimensional vector, all the information from the source sentence is treated equally in terms of attention. This is not reasonable. Therefore, Bahdanau et al. \[[4](#references)\] introduced attention mechanism, which can decode based on different fragments of the context sequence in order to address the difficulty of feature learning for long sentences. Decoder with attention will be explained in the following.
Y
Yi Wang 已提交
191 192 193 194 195 196 197 198 199

Different from the simple decoder, $z_i$ is computed as:

$$z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$$

It is observed that for each word $u_i$ in the target language sentence, there is a corresponding context vector $c_i$ as the encoding of the source sentence, which is computed as:

$$c_i=\sum _{j=1}^{T}a_{ij}h_j, a_i=\left[ a_{i1},a_{i2},...,a_{iT}\right ]$$

200
It is noted that the attention mechanism is achieved by a weighted average over the RNN hidden states $h_j$. The weight $a_{ij}$ denotes the strength of attention of the $i$-th word in the target language sentence to the $j$-th word in the source sentence and is calculated as
Y
Yi Wang 已提交
201

D
daming-lu 已提交
202 203
$$a_{ij} = {exp(e_{ij}) \over {\sum_{k=1}^T exp(e_{ik})}}$$
$$e_{ij} = {align(z_i, h_j)}$$
Y
Yi Wang 已提交
204

205
where $align$ is an alignment model that measures the fitness between the $i$-th word in the target language sentence and the $j$-th word in the source sentence. More concretely, the fitness is computed with the $i$-th hidden state $z_i$ of the decoder RNN and the $j$-th context vector $h_j$ of the source sentence. Hard alignment is used in the conventional alignment model, which means each word in the target language explicitly corresponds to one or more words from the target language sentence. In an attention model, soft alignment is used, where any word in source sentence is related to any word in the target language sentence, where the strength of the relation is a real number computed via the model, thus can be incorporated into the NMT framework and can be trained via back-propagation.
Y
Yi Wang 已提交
206 207 208

<p align="center">
<img src="image/decoder_attention_en.png" width=500><br/>
209
Figure 6. Decoder with Attention Mechanism
Y
Yi Wang 已提交
210 211 212 213
</p>

### Beam Search Algorithm

214
[Beam Search](http://en.wikipedia.org/wiki/Beam_search) is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. It is typically used when the solution space is huge  (e.g., for machine translation, speech recognition), and there is not enough memory for all the possible solutions. For example, if we want to translate “`<s>你好<e>`” into English, even if there are only three words in the dictionary (`<s>`, `<e>`, `hello`), it is still possible to generate an infinite number of sentences, where the word `hello` can appear different number of times. Beam search could be used to find a good translation among them.
Y
Yi Wang 已提交
215

216
Beam search builds a search tree using breadth first search and sorts the nodes according to a heuristic cost (sum of the log probability of the generated words) at each level of the tree. Only a fixed number of nodes according to the pre-specified beam size (or beam width) are considered. Thus, only nodes with highest scores are expanded in the next level. This reduces the space and time requirements significantly. However, a globally optimal solution is not guaranteed.
Y
Yi Wang 已提交
217 218 219 220 221 222

The goal is to maximize the probability of the generated sequence when using beam search in decoding, The procedure is as follows:

1. At each time step $i$, compute the hidden state $z_{i+1}$ of the next time step according to the context vector $c$ of the source sentence, the $i$-th word $u_i$ generated for the target language sentence and the RNN hidden state $z_i$.
2. Normalize $z_{i+1}$ using `softmax` to get the probability $p_{i+1}$ for the $i+1$-th word for the target language sentence.
3. Sample the word $u_{i+1}$ according to $p_{i+1}$.
223
4. Repeat Steps 1-3, until end-of-sentence token `<e>` is generated or the maximum length of the sentence is reached.
Y
Yi Wang 已提交
224

225
Note: $z_{i+1}$ and $p_{i+1}$ are computed the same way as in [Decoder](#Decoder). In generation mode, each step is greedy in so there is no guarantee of a global optimum.
Y
Yi Wang 已提交
226

M
Mimee 已提交
227 228 229 230 231 232
## BLEU Score

Bilingual Evaluation understudy (BLEU) is a metric widely used for automatic machine translation proposed by IBM Watson Research Center in 2002\[[5](#References)\]. The closer the translation produced by a machine is to the translation produced by a human expert, the better the performance of the translation system.

To measure the closeness between machine translation and human translation, sentence precision is used. It compares the number of matched n-grams. More matches will lead to higher BLEU scores.

Y
Yi Wang 已提交
233 234
## Data Preparation

235
This tutorial uses a dataset from [WMT-14](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/), where [bitexts (after selection)](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/bitexts.tgz) is used as the training set, and [dev+test data](http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz) is used as test and generation set.
Y
Yi Wang 已提交
236 237


238
### Data Preprocessing
Y
Yi Wang 已提交
239 240

There are two steps for pre-processing:
241
- Merge the source and target parallel corpus files into one file
Y
Yi Wang 已提交
242 243 244
  - Merge `XXX.src` and `XXX.trg` file pair as `XXX`
  - The $i$-th row in `XXX` is the concatenation of the $i$-th row from `XXX.src` with the $i$-th row from `XXX.trg`, separated with '\t'.

245
- Create source dictionary and target dictionary, each containing **DICTSIZE** number of words, including the most frequent (DICTSIZE - 3) fo word from the corpus and 3 special token `<s>` (begin of sequence), `<e>` (end of sequence)  and `<unk>` (unknown words that are not in the vocabulary).
Y
Yi Wang 已提交
246

247
### A Subset of Dataset
Y
Yi Wang 已提交
248

249
Because the full dataset is very big, to reduce the time for downloading the full dataset. PadddlePaddle package `paddle.dataset.wmt14` provides a preprocessed `subset of dataset`(http://paddlepaddle.bj.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz).
Y
Yi Wang 已提交
250

251
This subset has 193319 instances of training data and 6003 instances of test data. Dictionary size is 30000. Because of the limitation of size of the subset, the effectiveness of trained model from this subset is not guaranteed.
Y
Yi Wang 已提交
252

253
## Training Instructions
Y
Yi Wang 已提交
254

255
### Initialize PaddlePaddle
Y
Yi Wang 已提交
256

257
```python
258
import sys
259
import paddle.v2 as paddle
Y
Yi Wang 已提交
260

261 262
# train with a single CPU
paddle.init(use_gpu=False, trainer_count=1)
C
choijulie 已提交
263
# False: training, True: generating
L
Luo Tao 已提交
264
is_generating = False
Y
Yi Wang 已提交
265 266
```

267
### Model Configuration
D
dangqingqing 已提交
268

Y
Yi Wang 已提交
269 270 271
1. Define some global variables

   ```python
C
choijulie 已提交
272
   dict_size = 30000 # dict dim
273 274 275 276 277
   source_dict_dim = dict_size # source language dictionary size
   target_dict_dim = dict_size # destination language dictionary size
   word_vector_dim = 512 # word embedding dimension
   encoder_size = 512 # hidden layer size of GRU in encoder
   decoder_size = 512 # hidden layer size of GRU in decoder
C
choijulie 已提交
278 279
   beam_size = 3 # expand width in beam search
   max_length = 250 # a stop condition of sequence generation
C
caoying03 已提交
280
   ```
Y
Yi Wang 已提交
281

C
choijulie 已提交
282 283
2. Implement Encoder as follows:
   - Input is a sequence of words represented by an integer word index sequence. So we define data layer of data type `integer_value_sequence`. The value range of each element in the sequence is `[0, source_dict_dim)`
Y
Yi Wang 已提交
284 285

   ```python
C
caoying03 已提交
286 287 288
   src_word_id = paddle.layer.data(
       name='source_language_word',
       type=paddle.data_type.integer_value_sequence(source_dict_dim))
Y
Yi Wang 已提交
289
   ```
290

C
choijulie 已提交
291
   - Map the one-hot vector (represented by word index) into a word vector $\mathbf{s}$ in a low-dimensional semantic space
Y
Yi Wang 已提交
292 293

   ```python
C
caoying03 已提交
294 295
   src_embedding = paddle.layer.embedding(
       input=src_word_id, size=word_vector_dim)
Y
Yi Wang 已提交
296
   ```
297

C
choijulie 已提交
298
   - Use bi-direcitonal GRU to encode the source language sequence, and concatenate the encoding outputs from the two GRUs to get $\mathbf{h}$
Y
Yi Wang 已提交
299 300

   ```python
C
caoying03 已提交
301 302 303 304 305
   src_forward = paddle.networks.simple_gru(
       input=src_embedding, size=encoder_size)
   src_backward = paddle.networks.simple_gru(
       input=src_embedding, size=encoder_size, reverse=True)
   encoded_vector = paddle.layer.concat(input=[src_forward, src_backward])
Y
Yi Wang 已提交
306 307
   ```

C
choijulie 已提交
308
3. Implement Attention-based Decoder as follows:
Y
Yi Wang 已提交
309

C
choijulie 已提交
310
   - Get a projection of the encoding (c.f. 2.3) of the source language sequence by passing it into a feed forward neural network
Y
Yi Wang 已提交
311 312

   ```python
C
caoying03 已提交
313 314 315 316 317
   encoded_proj = paddle.layer.fc(
         act=paddle.activation.Linear(),
         size=decoder_size,
         bias_attr=False,
         input=encoded_vector)
Y
Yi Wang 已提交
318
   ```
D
dangqingqing 已提交
319

C
choijulie 已提交
320
   - Use a non-linear transformation of the last hidden state of the backward GRU on the source language sentence as the initial state of the decoder RNN $c_0=h_T$
Y
Yi Wang 已提交
321 322

   ```python
C
caoying03 已提交
323
   backward_first = paddle.layer.first_seq(input=src_backward)
C
caoying03 已提交
324 325 326 327 328
   decoder_boot = paddle.layer.fc(
         size=decoder_size,
         act=paddle.activation.Tanh(),
         bias_attr=False,
         input=backward_first)
Y
Yi Wang 已提交
329
   ```
D
dangqingqing 已提交
330

C
choijulie 已提交
331
   - Define the computation in each time step for the decoder RNN, i.e., according to the current context vector $c_i$, hidden state for the decoder $z_i$ and the $i$-th word $u_i$ in the target language to predict the probability $p_{i+1}$ for the $i+1$-th word.
Y
Yi Wang 已提交
332 333

      - decoder_mem records the hidden state $z_i$ from the previous time step, with an initial state as decoder_boot.
334
      - context is computed via `simple_attention` as $c_i=\sum {j=1}^{T}a_{ij}h_j$, where enc_vec is the projection of $h_j$ and enc_proj is the projection of $h_j$ (c.f. 3.1). $a_{ij}$ is calculated within `simple_attention`.
Y
Yi Wang 已提交
335 336 337 338 339
      - decoder_inputs fuse $c_i$ with the representation of the current_word (i.e., $u_i$).
      - gru_step uses `gru_step_layer` function to compute $z_{i+1}=\phi _{\theta '}\left ( c_i,u_i,z_i \right )$.
      - Softmax normalization is used in the end to computed the probability of words, i.e., $p\left ( u_i|u_{&lt;i},\mathbf{x} \right )=softmax(W_sz_i+b_z)$. The output is returned.

   ```python
C
caoying03 已提交
340
   def gru_decoder_with_attention(enc_vec, enc_proj, current_word):
341 342 343 344 345 346 347 348
        decoder_mem = paddle.layer.memory(
            name='gru_decoder', size=decoder_size, boot_layer=decoder_boot)

        context = paddle.networks.simple_attention(
            encoded_sequence=enc_vec,
            encoded_proj=enc_proj,
            decoder_state=decoder_mem)

C
caoying03 已提交
349 350
        decoder_inputs = paddle.layer.fc(
            act=paddle.activation.Linear(),
C
caoying03 已提交
351
            size=decoder_size * 3,
C
caoying03 已提交
352 353 354 355
            bias_attr=False,
            input=[context, current_word],
            layer_attr=paddle.attr.ExtraLayerAttribute(
            error_clipping_threshold=100.0))
356 357 358 359 360 361 362

        gru_step = paddle.layer.gru_step(
            name='gru_decoder',
            input=decoder_inputs,
            output_mem=decoder_mem,
            size=decoder_size)

C
caoying03 已提交
363
        out = paddle.layer.fc(
C
caoying03 已提交
364 365 366
            size=target_dict_dim,
            bias_attr=True,
            act=paddle.activation.Softmax(),
C
caoying03 已提交
367
            input=gru_step)
368
        return out
C
caoying03 已提交
369
   ```
D
dangqingqing 已提交
370

C
choijulie 已提交
371
4. Define the name for the decoder and the first two input for `gru_decoder_with_attention`. Note that `StaticInput` is used for the two inputs. Please refer to [StaticInput Document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/deep_model/rnn/recurrent_group_cn.md#输入) for more details.
Y
Yi Wang 已提交
372

373 374
    ```python
    decoder_group_name = "decoder_group"
C
caoying03 已提交
375 376
    group_input1 = paddle.layer.StaticInput(input=encoded_vector)
    group_input2 = paddle.layer.StaticInput(input=encoded_proj)
377 378
    group_inputs = [group_input1, group_input2]
    ```
D
dangqingqing 已提交
379

C
choijulie 已提交
380
5. Training mode:
Y
Yi Wang 已提交
381

J
julie 已提交
382
   - Word embedding from the target language trg_embedding is passed to `gru_decoder_with_attention` as current_word.
C
choijulie 已提交
383
   - `recurrent_group` calls `gru_decoder_with_attention` in a recurrent way
J
julie 已提交
384 385
   - The sequence of next words from the target language is used as label (lbl)
   - Multi-class cross-entropy (`classification_cost`) is used to calculate the cost
Y
Yi Wang 已提交
386

L
Luo Tao 已提交
387 388 389 390
   ```python
   if not is_generating:
       trg_embedding = paddle.layer.embedding(
           input=paddle.layer.data(
C
choijulie 已提交
391
               name='target_language_word',
L
Luo Tao 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
               type=paddle.data_type.integer_value_sequence(target_dict_dim)),
           size=word_vector_dim,
           param_attr=paddle.attr.ParamAttr(name='_target_language_embedding'))
       group_inputs.append(trg_embedding)

       # For decoder equipped with attention mechanism, in training,
       # target embeding (the groudtruth) is the data input,
       # while encoded source sequence is accessed to as an unbounded memory.
       # Here, the StaticInput defines a read-only memory
       # for the recurrent_group.
       decoder = paddle.layer.recurrent_group(
           name=decoder_group_name,
           step=gru_decoder_with_attention,
           input=group_inputs)

       lbl = paddle.layer.data(
           name='target_language_next_word',
           type=paddle.data_type.integer_value_sequence(target_dict_dim))
       cost = paddle.layer.classification_cost(input=decoder, label=lbl)
C
choijulie 已提交
411
   ```
412

C
choijulie 已提交
413
6. Generating mode:
L
Luo Tao 已提交
414

J
julie 已提交
415
   - The decoder predicts a next target word based on the the last generated target word. Embedding of the last generated word is automatically gotten by GeneratedInputs.
C
choijulie 已提交
416
   - `beam_search` calls `gru_decoder_with_attention` in a recurrent way, to predict sequence id.
L
Luo Tao 已提交
417 418 419 420

   ```python
   if is_generating:
       # In generation, the decoder predicts a next target word based on
C
caoying03 已提交
421
       # the encoded source sequence and the previous generated target word.
L
Luo Tao 已提交
422 423 424

       # The encoded source sequence (encoder's output) must be specified by
       # StaticInput, which is a read-only memory.
C
caoying03 已提交
425 426
       # Embedding of the previous generated word is automatically retrieved
       # by GeneratedInputs initialized by a start mark <s>.
L
Luo Tao 已提交
427

C
caoying03 已提交
428
       trg_embedding = paddle.layer.GeneratedInput(
L
Luo Tao 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442
           size=target_dict_dim,
           embedding_name='_target_language_embedding',
           embedding_size=word_vector_dim)
       group_inputs.append(trg_embedding)

       beam_gen = paddle.layer.beam_search(
           name=decoder_group_name,
           step=gru_decoder_with_attention,
           input=group_inputs,
           bos_id=0,
           eos_id=1,
           beam_size=beam_size,
           max_length=max_length)
   ```
D
dangqingqing 已提交
443

M
Mimee 已提交
444
Note: Our configuration is based on Bahdanau et al. \[[4](#references)\] but with a few simplifications. Please refer to [issue #1133](https://github.com/PaddlePaddle/Paddle/issues/1133) for more details.
Y
Yi Wang 已提交
445

C
choijulie 已提交
446
## Model Training
Y
Yi Wang 已提交
447

C
choijulie 已提交
448
1. Create Parameters
Y
Yi Wang 已提交
449

C
choijulie 已提交
450
    Create every parameter that `cost` layer needs. And we can get parameter names. If the parameter name is not specified during model configuration, it will be generated.
451

L
Luo Tao 已提交
452 453 454 455 456 457
    ```python
    if not is_generating:
        parameters = paddle.parameters.create(cost)
        for param in parameters.keys():
            print param
    ```
458

C
choijulie 已提交
459
2. Define DataSet
Y
Yi Wang 已提交
460

C
choijulie 已提交
461
    Create [**data reader**](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/reader#python-data-reader-design-doc) for WMT-14 dataset.
Y
Yi Wang 已提交
462

L
Luo Tao 已提交
463 464 465 466 467 468 469
    ```python
    if not is_generating:
        wmt14_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.wmt14.train(dict_size=dict_size), buf_size=8192),
            batch_size=5)
    ```
C
choijulie 已提交
470
3. Create trainer
Y
Yi Wang 已提交
471

472
    We need to tell trainer what to optimize, and how to optimize. Here trainer will optimize `cost` layer using stochastic gradient descent (SDG).
Y
Yi Wang 已提交
473

474
    ```python
L
Luo Tao 已提交
475 476 477 478 479 480 481
    if not is_generating:
        optimizer = paddle.optimizer.Adam(
            learning_rate=5e-5,
            regularization=paddle.optimizer.L2Regularization(rate=8e-4))
        trainer = paddle.trainer.SGD(cost=cost,
                                     parameters=parameters,
                                     update_equation=optimizer)
482
    ```
Y
Yi Wang 已提交
483

C
choijulie 已提交
484
4. Define event handler
Y
Yi Wang 已提交
485

486
    The event handler is a callback function invoked by trainer when an event happens. Here we will print log in event handler.
Y
Yi Wang 已提交
487

488
    ```python
L
Luo Tao 已提交
489 490 491 492 493 494
    if not is_generating:
        def event_handler(event):
            if isinstance(event, paddle.event.EndIteration):
                if event.batch_id % 2 == 0:
                    print "\nPass %d, Batch %d, Cost %f, %s" % (
                        event.pass_id, event.batch_id, event.cost, event.metrics)
495
    ```
Y
Yi Wang 已提交
496

C
choijulie 已提交
497
5. Start training
Y
Yi Wang 已提交
498

499
    ```python
L
Luo Tao 已提交
500 501 502
    if not is_generating:
        trainer.train(
                reader=wmt14_reader, event_handler=event_handler, num_passes=2)
503
    ```
Y
Yi Wang 已提交
504

C
choijulie 已提交
505 506 507 508 509 510
  The training log is as follows:
  ```text
  Pass 0, Batch 0, Cost 247.408008, {'classification_error_evaluator': 1.0}
  Pass 0, Batch 10, Cost 212.058789, {'classification_error_evaluator': 0.8737863898277283}
  ...
  ```
Y
Yu Yang 已提交
511

C
choijulie 已提交
512
## Model Usage
Y
Yu Yang 已提交
513

C
choijulie 已提交
514
1. Download Pre-trained Model
Y
Yu Yang 已提交
515

C
choijulie 已提交
516
    As the training of an NMT model is very time consuming, we provide a pre-trained model. The model is trained with a cluster of 50 physical nodes (each node has two 6-core CPU) over 5 days. The provided model has the [BLEU Score](#BLEU Score) of 26.92, and the size of 205M.
517

L
Luo Tao 已提交
518 519 520
    ```python
    if is_generating:
        parameters = paddle.dataset.wmt14.model()
521
    ```
C
choijulie 已提交
522
2. Define DataSet
Y
Yi Wang 已提交
523

C
choijulie 已提交
524
    Get the first 3 samples of wmt14 generating set as the source language sequences.
525

C
choijulie 已提交
526 527
   ```python
   if is_generating:
L
Luo Tao 已提交
528 529 530 531 532 533 534
        gen_creator = paddle.dataset.wmt14.gen(dict_size)
        gen_data = []
        gen_num = 3
        for item in gen_creator():
            gen_data.append((item[0], ))
            if len(gen_data) == gen_num:
                break
C
choijulie 已提交
535
   ```
536

C
choijulie 已提交
537
3. Create infer
538

C
choijulie 已提交
539
    Use inference interface `paddle.infer` return the prediction probability (see field `prob`) and labels (see field `id`) of each generated sequence.
Y
Yi Wang 已提交
540

C
choijulie 已提交
541 542
   ```python
   if is_generating:
L
Luo Tao 已提交
543 544 545 546 547
        beam_result = paddle.infer(
            output_layer=beam_gen,
            parameters=parameters,
            input=gen_data,
            field=['prob', 'id'])
C
choijulie 已提交
548 549
   ```
4. Print generated translation
Y
Yi Wang 已提交
550

C
choijulie 已提交
551
    Print sequence and its `beam_size` generated translation results based on the dictionary.
Y
Yi Wang 已提交
552

C
choijulie 已提交
553 554
   ```python
   if is_generating:
C
caoying03 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
       # load the dictionary
       src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)

       gen_sen_idx = np.where(beam_result[1] == -1)[0]
       assert len(gen_sen_idx) == len(gen_data) * beam_size

       # -1 is the delimiter of generated sequences.
       # the first element of each generated sequence its length.
       start_pos, end_pos = 1, 0
       for i, sample in enumerate(gen_data):
           print(" ".join([src_dict[w] for w in sample[0][1:-1]]))
           for j in xrange(beam_size):
               end_pos = gen_sen_idx[i * beam_size + j]
               print("%.4f\t%s" % (beam_result[0][i][j], " ".join(
                     trg_dict[w] for w in beam_result[1][start_pos:end_pos])))
               start_pos = end_pos + 2
           print("\n")
C
choijulie 已提交
572
   ```
Y
Yi Wang 已提交
573

C
choijulie 已提交
574
  The generating log is as follows:
L
Luo Tao 已提交
575
  ```text
C
caoying03 已提交
576 577 578 579
  Les <unk> se <unk> au sujet de la largeur des sièges alors que de grosses commandes sont en jeu
  -19.0196        The <unk> will be rotated about the width of the seats , while large orders are at stake . <e>
  -19.1131        The <unk> will be rotated about the width of the seats , while large commands are at stake . <e>
  -19.5129        The <unk> will be rotated about the width of the seats , while large commands are at play . <e>
L
Luo Tao 已提交
580
  ```
Y
Yi Wang 已提交
581 582 583

## Summary

584
End-to-end neural machine translation is a recently developed way to perform machine translations. In this chapter, we introduced the typical "Encoder-Decoder" framework and "attention" mechanism. Since NMT is a typical Sequence-to-Sequence (Seq2Seq) learning problem, tasks such as query rewriting, abstraction generation, and single-turn dialogues can all be solved with the model presented in this chapter.
Y
Yi Wang 已提交
585 586 587 588 589 590 591 592 593 594

## References

1. Koehn P. [Statistical machine translation](https://books.google.com.hk/books?id=4v_Cx1wIMLkC&printsec=frontcover&hl=zh-CN&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false)[M]. Cambridge University Press, 2009.
2. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://www.aclweb.org/anthology/D/D14/D14-1179.pdf)[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1724-1734.
3. Chung J, Gulcehre C, Cho K H, et al. [Empirical evaluation of gated recurrent neural networks on sequence modeling](https://arxiv.org/abs/1412.3555)[J]. arXiv preprint arXiv:1412.3555, 2014.
4.  Bahdanau D, Cho K, Bengio Y. [Neural machine translation by jointly learning to align and translate](https://arxiv.org/abs/1409.0473)[C]//Proceedings of ICLR 2015, 2015.
5. Papineni K, Roukos S, Ward T, et al. [BLEU: a method for automatic evaluation of machine translation](http://dl.acm.org/citation.cfm?id=1073135)[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Association for Computational Linguistics, 2002: 311-318.

<br/>
L
Luo Tao 已提交
595
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
596

Y
Yi Wang 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
615
        document.getElementById("markdown").innerHTML)
Y
Yi Wang 已提交
616 617
</script>
</body>