README.en.md 21.4 KB
Newer Older
Z
Zhuoyuan 已提交
1 2
# Sentiment Analysis

3
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/05.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
Z
Zhuoyuan 已提交
4

L
liaogang 已提交
5 6
## Background

7
In natural language processing, sentiment analysis refers to determining the emotion expressed in a piece of text. The text can be a sentence, a paragraph, or a document. Emotion categorization can be binary -- positive/negative or happy/sad -- or in three classes -- positive/neutral/negative. Sentiment analysis is applicable in a wide range of services, such as e-commerce sites like Amazon and Taobao, hospitality services like Airbnb and hotels.com, and movie rating sites like Rotten Tomatoes and IMDB. It can be used to gauge from the reviews how the customers feel about the product. Table 1 illustrates an example of sentiment analysis in movie reviews:
Z
Zhuoyuan 已提交
8 9 10 11 12 13 14 15 16 17

| Movie Review       | Category  |
| --------     | -----  |
| Best movie of Xiaogang Feng in recent years!| Positive |
| Pretty bad. Feels like a tv-series from a local TV-channel     | Negative |
| Politically correct version of Taken ... and boring as Heck| Negative|
|delightful, mesmerizing, and completely unexpected. The plot is nicely designed.|Positive|

<p align="center">Table 1 Sentiment Analysis in Movie Reviews</p>

18
In natural language processing, sentiment analysis can be categorized as a **Text Classification problem**, i.e., to categorize a piece of text to a specific class. It involves two related tasks: text representation and classification. Before the emergence of deep learning techniques, the mainstream methods for text representation include BOW (*bag of words*) and topic modeling, while the latter contain SVM (*support vector machine*) and LR (*logistic regression*).
Z
Zhuoyuan 已提交
19

20
The BOW model does not capture all the information in a piece of text, as it ignores syntax and grammar and just treats the text as a set of words. For example, “this movie is extremely bad“ and “boring, dull, and empty work” describe very similar semantic meaning, yet their BOW representations have with little similarity. Furthermore, “the movie is bad“ and “the movie is not bad“ have high similarity with BOW features, but they express completely opposite semantics.
Z
Zhuoyuan 已提交
21

22
This chapter introduces a deep learning model that handles these issues in BOW. Our model embeds texts into a low-dimensional space and takes word order into consideration. It is an end-to-end framework and it has large performance improvement over traditional methods \[[1](#Reference)\].
Z
Zhuoyuan 已提交
23 24

## Model Overview
L
liaogang 已提交
25

26
The model we used in this chapter uses **Convolutional Neural Networks** (**CNNs**) and **Recurrent Neural Networks** (**RNNs**) with some specific extensions.
Z
Zhuoyuan 已提交
27 28 29


### Convolutional Neural Networks for Texts (CNN)
L
liaogang 已提交
30

31
**Convolutional Neural Networks** are frequently applied to data with grid-like topology such as two-dimensional images and one-dimensional texts. A CNN can extract multiple local features, combine them, and produce high-level abstractions, which correspond to semantic understanding. Empirically, CNN is shown to be efficient for image and text modeling.
Z
Zhuoyuan 已提交
32

33
CNN mainly contains convolution and pooling operation, with versatile combinations in various applications. Here, we briefly describe a CNN used to classify texts\[[1](#Refernce)\], as shown in Figure 1.
Z
Zhuoyuan 已提交
34 35 36


<p align="center">
37
<img src="image/text_cnn_en.png" width = "80%" align="center"/><br/>
38
Figure 1. CNN for text modeling.
Z
Zhuoyuan 已提交
39
</p>
40

41
Let $n$ be the length of the sentence to process, and the $i$-th word has embedding as $x_i\in\mathbb{R}^k$,where $k$ is the embedding dimensionality.
Z
Zhuoyuan 已提交
42

43
First, we concatenate the words by piecing together every $h$ words, each as a window of length $h$. This window is denoted as $x_{i:i+h-1}$, consisting of $x_{i},x_{i+1},\ldots,x_{i+h-1}$, where $x_i$ is the first word in the window and $i$ takes value ranging from $1$ to $n-h+1$: $x_{i:i+h-1}\in\mathbb{R}^{hk}$.
Z
Zhuoyuan 已提交
44

45
Next, we apply the convolution operation: we apply the kernel $w\in\mathbb{R}^{hk}$ in each window, extracting features $c_i=f(w\cdot x_{i:i+h-1}+b)$, where $b\in\mathbb{R}$ is the bias and $f$ is a non-linear activation function such as $sigmoid$. Convolving by the kernel at every window ${x_{1:h},x_{2:h+1},\ldots,x_{n-h+1:n}}$ produces a feature map in the following form:
Z
Zhuoyuan 已提交
46 47 48

$$c=[c_1,c_2,\ldots,c_{n-h+1}], c \in \mathbb{R}^{n-h+1}$$

49
Next, we apply *max pooling* over time to represent the whole sentence $\hat c$, which is the maximum element across the feature map:
Z
Zhuoyuan 已提交
50 51 52 53 54

$$\hat c=max(c)$$

In real applications, we will apply multiple CNN kernels on the sentences. It can be implemented efficiently by concatenating the kernels together as a matrix. Also, we can use CNN kernels with different kernel size (as shown in Figure 1 in different colors).

55
Finally, concatenating the resulting features produces a fixed-length representation, which can be combined with a softmax to form the model for the sentiment analysis problem.
Z
Zhuoyuan 已提交
56

57
For short texts, the aforementioned CNN model can achieve very high accuracy \[[1](#Reference)\]. If we want to extract more abstract representations, we may apply a deeper CNN model \[[2](#Reference),[3](#Reference)\].
Z
Zhuoyuan 已提交
58

L
liaogang 已提交
59 60
### Recurrent Neural Network (RNN)

61
RNN is an effective model for sequential data. In terms of computability, the RNN is Turing-complete \[[4](#Reference)\]. Since NLP is a classical problem on sequential data, the RNN, especially its variant LSTM\[[5](#Reference)\]), achieves state-of-the-art performance on various NLP tasks, such as language modeling, syntax parsing, POS-tagging, image captioning, dialog, machine translation, and so forth.
Z
Zhuoyuan 已提交
62 63 64

<p align="center">
<img src="image/rnn.png" width = "60%" align="center"/><br/>
65
Figure 2. An illustration of an unfolded RNN in time.
Z
Zhuoyuan 已提交
66
</p>
L
fix bug  
livc 已提交
67

68
As shown in Figure 2, we unfold an RNN: at the $t$-th time step, the network takes two inputs: the $t$-th input vector $\vec{x_t}$ and the latent state from the last time-step $\vec{h_{t-1}}$. From those, it computes the latent state of the current step $\vec{h_t}$. This process is repeated until all inputs are consumed. Denoting the RNN as function $f$, it can be formulated as follows:
Z
Zhuoyuan 已提交
69

70
$$\vec{h_t}=f(\vec{x_t},\vec{h_{t-1}})=\sigma(W_{xh}\vec{x_t}+W_{hh}\vec{h_{h-1}}+\vec{b_h})$$
Z
Zhuoyuan 已提交
71

72
where $W_{xh}$ is the weight matrix to feed into the latent layer; $W_{hh}$ is the latent-to-latent matrix; $b_h$ is the latent bias and $\sigma$ refers to the $sigmoid$ function.
Z
Zhuoyuan 已提交
73

74
In NLP, words are often represented as a one-hot vectors and then mapped to an embedding. The embedded feature goes through an RNN as input $x_t$ at every time step. Moreover, we can add other layers on top of RNN, such as a deep or stacked RNN. Finally, the last latent state may be used as a feature for sentence classification.
Z
Zhuoyuan 已提交
75

L
liaogang 已提交
76 77
### Long-Short Term Memory (LSTM)

78
Training an RNN on long sequential data sometimes leads to the gradient vanishing or exploding\[[6](#)\]. To solve this problem Hochreiter S, Schmidhuber J. (1997) proposed **Long Short Term Memory** (LSTM)\[[5](#Reference)\]).
Z
Zhuoyuan 已提交
79

80
Compared to the structure of a simple RNN, an LSTM includes memory cell $c$, input gate $i$, forget gate $f$ and output gate $o$. These gates and memory cells dramatically improve the ability for the network to handle long sequences. We can formulate the **LSTM-RNN**, denoted as a function $F$, as follows:
Z
Zhuoyuan 已提交
81 82 83 84 85 86 87

$$ h_t=F(x_t,h_{t-1})$$

$F$ contains following formulations\[[7](#Reference)\]
\begin{align}
i_t & = \sigma(W_{xi}x_t+W_{hi}h_{h-1}+W_{ci}c_{t-1}+b_i)\\\\
f_t & = \sigma(W_{xf}x_t+W_{hf}h_{h-1}+W_{cf}c_{t-1}+b_f)\\\\
88
c_t & = f_t\odot c_{t-1}+i_t\odot \tanh(W_{xc}x_t+W_{hc}h_{h-1}+b_c)\\\\
Z
Zhuoyuan 已提交
89
o_t & = \sigma(W_{xo}x_t+W_{ho}h_{h-1}+W_{co}c_{t}+b_o)\\\\
90
h_t & = o_t\odot \tanh(c_t)\\\\
Z
Zhuoyuan 已提交
91 92
\end{align}

93
In the equation,$i_t, f_t, c_t, o_t$ stand for input gate, forget gate, memory cell and output gate, respectively. $W$ and $b$ are model parameters, $\tanh$ is a hyperbolic tangent, and $\odot$ denotes an element-wise product operation. The input gate controls the magnitude of the new input into the memory cell $c$; the forget gate controls the memory propagated from the last time step; the output gate controls the magnitutde of the output. The three gates are computed similarly with different parameters, and they influence memory cell $c$ separately, as shown in Figure 3:
94

Z
Zhuoyuan 已提交
95
<p align="center">
96 97
<img src="image/lstm_en.png" width = "65%" align="center"/><br/>
Figure 3. LSTM at time step $t$ [7].
Z
Zhuoyuan 已提交
98
</p>
99

Z
Zhuoyuan 已提交
100
LSTM enhances the ability of considering long-term reliance, with the help of memory cell and gate. Similar structures are also proposed in Gated Recurrent Unit (GRU)\[[8](Reference)\] with simpler design. **The structures are still similar to RNN, though with some modifications (As shown in Figure 2), i.e., latent status depends on input as well as the latent status of last time-step, and the process goes on recurrently until all input are consumed:**
Z
Zhuoyuan 已提交
101 102 103 104 105

$$ h_t=Recrurent(x_t,h_{t-1})$$
where $Recrurent$ is a simple RNN, GRU or LSTM.

### Stacked Bidirectional LSTM
L
liaogang 已提交
106

Z
Zhuoyuan 已提交
107 108 109 110 111
For vanilla LSTM, $h_t$ contains input information from previous time-step $1..t-1$ context. We can also apply an RNN with reverse-direction to take successive context $t+1…n$ into consideration. Combining constructing deep RNN (deeper RNN can contain more abstract and higher level semantic), we can design structures with deep stacked bidirectional LSTM to model sequential data\[[9](#Reference)\].

As shown in Figure 4 (3-layer RNN), odd/even layers are forward/reverse LSTM. Higher layers of LSTM take lower-layers LSTM as input, and the top-layer LSTM produces a fixed length vector by max-pooling (this representation considers contexts from previous and successive words for higher-level abstractions). Finally, we concatenate the output to a softmax layer for classification.

<p align="center">
112 113
<img src="image/stacked_lstm_en.png" width=450><br/>
Figure 4. Stacked Bidirectional LSTM for NLP modeling.
Z
Zhuoyuan 已提交
114 115
</p>

L
liaogang 已提交
116
## Dataset
Z
Zhuoyuan 已提交
117

L
liaogang 已提交
118
We use [IMDB](http://ai.stanford.edu/%7Eamaas/data/sentiment/) dataset for sentiment analysis in this tutorial, which consists of 50,000 movie reviews split evenly into 25k train and 25k test sets. In the labeled train/test sets, a negative review has a score <= 4 out of 10, and a positive review has a score >= 7 out of 10.
Z
Zhuoyuan 已提交
119

120
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens`, and `wmt14`, etc. There's no need for us to manually download and preprocess IMDB.
Z
Zhuoyuan 已提交
121

122
After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.
Z
Zhuoyuan 已提交
123 124


L
liaogang 已提交
125
## Model Structure
Z
Zhuoyuan 已提交
126

L
liaogang 已提交
127
### Initialize PaddlePaddle
Z
Zhuoyuan 已提交
128

L
liaogang 已提交
129
We must import and initialize PaddlePaddle (enable/disable GPU, set the number of trainers, etc).
Z
Zhuoyuan 已提交
130

L
liaogang 已提交
131 132 133 134 135 136
```python
import sys
import paddle.v2 as paddle

# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
Z
Zhuoyuan 已提交
137 138
```

L
liaogang 已提交
139
As alluded to in section [Model Overview](#model-overview), here we provide the implementations of both Text CNN and Stacked-bidirectional LSTM models.
Z
Zhuoyuan 已提交
140

L
liaogang 已提交
141
### Text Convolution Neural Network (Text CNN)
Z
Zhuoyuan 已提交
142

L
liaogang 已提交
143
We create a neural network `convolution_net` as the following snippet code.
Z
Zhuoyuan 已提交
144

L
liaogang 已提交
145
Note: `paddle.networks.sequence_conv_pool` includes both convolution and pooling layer operations.
Z
Zhuoyuan 已提交
146 147

```python
L
liaogang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)
    output = paddle.layer.fc(input=[conv_3, conv_4],
                             size=class_dim,
                             act=paddle.activation.Softmax())
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
162 163
```

L
liaogang 已提交
164
1. Define input data and its dimension
Z
Zhuoyuan 已提交
165

L
liaogang 已提交
166
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `convolution_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
167

L
liaogang 已提交
168
1. Define Classifier
Z
Zhuoyuan 已提交
169

L
liaogang 已提交
170
    The above Text CNN network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
171

L
liaogang 已提交
172
1. Define Loss Function
Z
Zhuoyuan 已提交
173

174
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
L
liaogang 已提交
175 176 177 178

#### Stacked bidirectional LSTM

We create a neural network `stacked_lstm_net` as below.
Z
Zhuoyuan 已提交
179 180 181

```python
def stacked_lstm_net(input_dim,
L
liaogang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109
    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    """
    assert stacked_num % 2 == 1

    layer_attr = paddle.attr.Extra(drop_rate=0.5)
    fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
    lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
    relu = paddle.activation.Relu()
    linear = paddle.activation.Linear()

    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    fc1 = paddle.layer.fc(input=emb,
                          size=hid_dim,
                          act=linear,
                          bias_attr=bias_attr)
    lstm1 = paddle.layer.lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = paddle.layer.fc(input=inputs,
                             size=hid_dim,
                             act=linear,
                             param_attr=para_attr,
                             bias_attr=bias_attr)
        lstm = paddle.layer.lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = paddle.layer.pooling(
        input=inputs[0], pooling_type=paddle.pooling.Max())
    lstm_last = paddle.layer.pooling(
        input=inputs[1], pooling_type=paddle.pooling.Max())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
247 248
```

L
liaogang 已提交
249
1. Define input data and its dimension
250

L
liaogang 已提交
251
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `stacked_lstm_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
252

L
liaogang 已提交
253
1. Define Classifier
Z
Zhuoyuan 已提交
254

L
liaogang 已提交
255
    The above stacked bidirectional LSTM network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
256

L
liaogang 已提交
257
1. Define Loss Function
Z
Zhuoyuan 已提交
258

259
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
Z
Zhuoyuan 已提交
260 261


L
liaogang 已提交
262
To reiterate, we can either invoke `convolution_net` or `stacked_lstm_net`.
263

Z
Zhuoyuan 已提交
264
```python
L
liaogang 已提交
265 266 267 268 269 270 271 272
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2

# option 1
cost = convolution_net(dict_dim, class_dim=class_dim)
# option 2
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
Z
Zhuoyuan 已提交
273 274 275 276
```

## Model Training

L
liaogang 已提交
277
### Define Parameters
Z
Zhuoyuan 已提交
278

L
liaogang 已提交
279
First, we create the model parameters according to the previous model configuration `cost`.
Z
Zhuoyuan 已提交
280

L
liaogang 已提交
281 282 283
```python
# create parameters
parameters = paddle.parameters.create(cost)
Z
Zhuoyuan 已提交
284 285
```

L
liaogang 已提交
286
### Create Trainer
Z
Zhuoyuan 已提交
287

L
liaogang 已提交
288 289
Before jumping into creating a training module, algorithm setting is also necessary.
Here we specified `Adam` optimization algorithm via `paddle.optimizer`.
Z
Zhuoyuan 已提交
290

L
liaogang 已提交
291 292 293 294 295 296 297 298 299 300 301
```python
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# create trainer
trainer = paddle.trainer.SGD(cost=cost,
                                parameters=parameters,
                                update_equation=adam_optimizer)
Z
Zhuoyuan 已提交
302 303
```

L
liaogang 已提交
304
### Training
Z
Zhuoyuan 已提交
305

L
liaogang 已提交
306
`paddle.dataset.imdb.train()` will yield records during each pass, after shuffling, a batch input is generated for training.
Z
Zhuoyuan 已提交
307

L
liaogang 已提交
308 309 310 311 312
```python
train_reader = paddle.batch(
    paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
    batch_size=100)
Z
Zhuoyuan 已提交
313

L
liaogang 已提交
314 315
test_reader = paddle.batch(
    lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
Z
Zhuoyuan 已提交
316 317
```

L
liaogang 已提交
318
`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `paddle.dataset.imdb.train()` corresponds to `word` feature.
Z
Zhuoyuan 已提交
319

L
liaogang 已提交
320 321
```python
feeding = {'word': 0, 'label': 1}
Z
Zhuoyuan 已提交
322 323
```

324
Callback function `event_handler` will be invoked to track training progress when a pre-defined event happens.
Z
Zhuoyuan 已提交
325

L
liaogang 已提交
326 327 328 329 330 331 332 333 334 335
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
G
gongweibao 已提交
336
        result = trainer.test(reader=test_reader, feeding=feeding)
L
liaogang 已提交
337
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
Z
Zhuoyuan 已提交
338 339
```

L
liaogang 已提交
340
Finally, we can invoke `trainer.train` to start training:
Z
Zhuoyuan 已提交
341

L
liaogang 已提交
342 343 344 345
```python
trainer.train(
    reader=train_reader,
    event_handler=event_handler,
H
Helin Wang 已提交
346
    feeding=feeding,
L
liaogang 已提交
347
    num_passes=10)
Z
Zhuoyuan 已提交
348 349 350
```


L
liaogang 已提交
351
## Conclusion
Z
Zhuoyuan 已提交
352

353
In this chapter, we use sentiment analysis as an example to introduce applying deep learning models on end-to-end short text classification, as well as how to use PaddlePaddle to implement the model. Meanwhile, we briefly introduce two models for text processing: CNN and RNN. In following chapters, we will see how these models can be applied in other tasks.
L
liaogang 已提交
354

Z
Zhuoyuan 已提交
355
## Reference
L
liaogang 已提交
356

Z
Zhuoyuan 已提交
357 358 359 360 361 362 363 364 365 366 367
1. Kim Y. [Convolutional neural networks for sentence classification](http://arxiv.org/pdf/1408.5882)[J]. arXiv preprint arXiv:1408.5882, 2014.
2. Kalchbrenner N, Grefenstette E, Blunsom P. [A convolutional neural network for modelling sentences](http://arxiv.org/pdf/1404.2188.pdf?utm_medium=App.net&utm_source=PourOver)[J]. arXiv preprint arXiv:1404.2188, 2014.
3. Yann N. Dauphin, et al. [Language Modeling with Gated Convolutional Networks](https://arxiv.org/pdf/1612.08083v1.pdf)[J] arXiv preprint arXiv:1612.08083, 2016.
4. Siegelmann H T, Sontag E D. [On the computational power of neural nets](http://research.cs.queensu.ca/home/akl/cisc879/papers/SELECTED_PAPERS_FROM_VARIOUS_SOURCES/05070215382317071.pdf)[C]//Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992: 440-449.
5. Hochreiter S, Schmidhuber J. [Long short-term memory](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)[J]. Neural computation, 1997, 9(8): 1735-1780.
6. Bengio Y, Simard P, Frasconi P. [Learning long-term dependencies with gradient descent is difficult](http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf)[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
7. Graves A. [Generating sequences with recurrent neural networks](http://arxiv.org/pdf/1308.0850)[J]. arXiv preprint arXiv:1308.0850, 2013.
8. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://arxiv.org/pdf/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
9. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
368
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.