train.py 4.3 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5
import paddle.v2 as paddle
import cPickle
import copy


Q
qijun 已提交
6
def get_usr_combined_features():
Y
Yu Yang 已提交
7 8 9 10 11
    uid = paddle.layer.data(
        name='user_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_user_id() + 1))
    usr_emb = paddle.layer.embedding(input=uid, size=32)
L
livc 已提交
12
    usr_fc = paddle.layer.fc(input=usr_emb, size=32)
Y
Yu Yang 已提交
13 14 15 16

    usr_gender_id = paddle.layer.data(
        name='gender_id', type=paddle.data_type.integer_value(2))
    usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)
L
livc 已提交
17
    usr_gender_fc = paddle.layer.fc(input=usr_gender_emb, size=16)
Y
Yu Yang 已提交
18 19 20 21 22 23

    usr_age_id = paddle.layer.data(
        name='age_id',
        type=paddle.data_type.integer_value(
            len(paddle.dataset.movielens.age_table)))
    usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
L
livc 已提交
24
    usr_age_fc = paddle.layer.fc(input=usr_age_emb, size=16)
Y
Yu Yang 已提交
25 26 27 28 29 30

    usr_job_id = paddle.layer.data(
        name='job_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_job_id() + 1))
    usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
L
livc 已提交
31
    usr_job_fc = paddle.layer.fc(input=usr_job_emb, size=16)
Y
Yu Yang 已提交
32 33

    usr_combined_features = paddle.layer.fc(
L
livc 已提交
34
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc],
Y
Yu Yang 已提交
35 36
        size=200,
        act=paddle.activation.Tanh())
Q
qijun 已提交
37
    return usr_combined_features
Y
Yu Yang 已提交
38

Q
qijun 已提交
39

Q
qijun 已提交
40 41
def get_mov_combined_features():
    movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
Y
Yu Yang 已提交
42 43 44 45 46
    mov_id = paddle.layer.data(
        name='movie_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_movie_id() + 1))
    mov_emb = paddle.layer.embedding(input=mov_id, size=32)
L
livc 已提交
47
    mov_fc = paddle.layer.fc(input=mov_emb, size=32)
Y
Yu Yang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

    mov_categories = paddle.layer.data(
        name='category_id',
        type=paddle.data_type.sparse_binary_vector(
            len(paddle.dataset.movielens.movie_categories())))
    mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)

    mov_title_id = paddle.layer.data(
        name='movie_title',
        type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
    mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
    mov_title_conv = paddle.networks.sequence_conv_pool(
        input=mov_title_emb, hidden_size=32, context_len=3)

    mov_combined_features = paddle.layer.fc(
L
livc 已提交
63
        input=[mov_fc, mov_categories_hidden, mov_title_conv],
Y
Yu Yang 已提交
64 65
        size=200,
        act=paddle.activation.Tanh())
Q
qijun 已提交
66
    return mov_combined_features
Q
qijun 已提交
67

Y
Yu Yang 已提交
68

Q
qijun 已提交
69 70 71 72
def main():
    paddle.init(use_gpu=False)
    usr_combined_features = get_usr_combined_features()
    mov_combined_features = get_mov_combined_features()
Y
Yu Yang 已提交
73 74
    inference = paddle.layer.cos_sim(
        a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
L
Luo Tao 已提交
75
    cost = paddle.layer.mse_cost(
Y
Yu Yang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
        input=inference,
        label=paddle.layer.data(
            name='score', type=paddle.data_type.dense_vector(1)))

    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
    feeding = {
        'user_id': 0,
        'gender_id': 1,
        'age_id': 2,
        'job_id': 3,
        'movie_id': 4,
        'category_id': 5,
        'movie_title': 6,
        'score': 7
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.2f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.movielens.train(), buf_size=8192),
            batch_size=256),
        event_handler=event_handler,
        feeding=feeding,
        num_passes=1)

    user_id = 234
    movie_id = 345

    user = paddle.dataset.movielens.user_info()[user_id]
    movie = paddle.dataset.movielens.movie_info()[movie_id]

    feature = user.value() + movie.value()

    infer_dict = copy.copy(feeding)
    del infer_dict['score']

    prediction = paddle.infer(
        output_layer=inference,
        parameters=parameters,
        input=[feature],
        feeding=infer_dict)
    print(prediction + 5) / 2


if __name__ == '__main__':
    main()