提交 d0355ba0 编写于 作者: L Luo Tao

rename regression_cost to mse_cost

上级 7a59eea0
......@@ -189,7 +189,7 @@
" size=1,\n",
" act=paddle.activation.Linear())\n",
"y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))\n",
"cost = paddle.layer.regression_cost(input=y_predict, label=y)\n"
"cost = paddle.layer.mse_cost(input=y_predict, label=y)\n"
],
"outputs": [
{
......
......@@ -132,7 +132,7 @@ y_predict = paddle.layer.fc(input=x,
size=1,
act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y)
cost = paddle.layer.mse_cost(input=y_predict, label=y)
```
### Create Parameters
......
......@@ -183,7 +183,7 @@
" size=1,\n",
" act=paddle.activation.Linear())\n",
"y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))\n",
"cost = paddle.layer.regression_cost(input=y_predict, label=y)\n"
"cost = paddle.layer.mse_cost(input=y_predict, label=y)\n"
],
"outputs": [
{
......
......@@ -126,7 +126,7 @@ y_predict = paddle.layer.fc(input=x,
size=1,
act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y)
cost = paddle.layer.mse_cost(input=y_predict, label=y)
```
### 创建参数
......
......@@ -174,7 +174,7 @@ y_predict = paddle.layer.fc(input=x,
size=1,
act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y)
cost = paddle.layer.mse_cost(input=y_predict, label=y)
```
### Create Parameters
......
......@@ -168,7 +168,7 @@ y_predict = paddle.layer.fc(input=x,
size=1,
act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y)
cost = paddle.layer.mse_cost(input=y_predict, label=y)
```
### 创建参数
......
......@@ -10,7 +10,7 @@ def main():
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear())
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.regression_cost(input=y_predict, label=y)
cost = paddle.layer.mse_cost(input=y_predict, label=y)
# create parameters
parameters = paddle.parameters.create(cost)
......
......@@ -449,7 +449,7 @@
},
"source": [
"inference = paddle.layer.cos_sim(a=usr_combined_features, b=mov_combined_features, size=1, scale=5)\n",
"cost = paddle.layer.regression_cost(\n",
"cost = paddle.layer.mse_cost(\n",
" input=inference,\n",
" label=paddle.layer.data(\n",
" name='score', type=paddle.data_type.dense_vector(1)))\n"
......@@ -536,7 +536,7 @@
"\n",
"```text\n",
"[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]\n",
"[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__regression_cost_0__]\n",
"[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]\n",
"```\n",
"\n",
"### Training\n",
......
......@@ -260,7 +260,7 @@ Finally, we can use cosine similarity to calculate the similarity between user c
```python
inference = paddle.layer.cos_sim(a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
cost = paddle.layer.regression_cost(
cost = paddle.layer.mse_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
......@@ -288,7 +288,7 @@ trainer = paddle.trainer.SGD(cost=cost, parameters=parameters,
```text
[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__regression_cost_0__]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]
```
### Training
......
......@@ -479,7 +479,7 @@
"editable": true
},
"source": [
"cost = paddle.layer.regression_cost(\n",
"cost = paddle.layer.mse_cost(\n",
" input=inference,\n",
" label=paddle.layer.data(\n",
" name='score', type=paddle.data_type.dense_vector(1)))\n"
......@@ -535,7 +535,7 @@
"source": [
"\n",
" [INFO 2017-03-06 17:12:13,284 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]\n",
" [INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__regression_cost_0__]\n",
" [INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__mse_cost_0__]\n",
"\n",
"\n",
"`parameters`是模型的所有参数集合。他是一个python的dict。我们可以查看到这个网络中的所有参数名称。因为之前定义模型的时候,我们没有指定参数名称,这里参数名称是自动生成的。当然,我们也可以指定每一个参数名称,方便日后维护。\n",
......@@ -603,7 +603,7 @@
"source": [
"\n",
" [INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]\n",
" [INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__regression_cost_0__]\n",
" [INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]\n",
"\n",
"\n",
"### 训练\n",
......
......@@ -268,7 +268,7 @@ inference = paddle.layer.cos_sim(a=usr_combined_features, b=mov_combined_feature
```python
cost = paddle.layer.regression_cost(
cost = paddle.layer.mse_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
......@@ -287,7 +287,7 @@ parameters = paddle.parameters.create(cost)
```
[INFO 2017-03-06 17:12:13,284 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__regression_cost_0__]
[INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__mse_cost_0__]
`parameters`是模型的所有参数集合。他是一个python的dict。我们可以查看到这个网络中的所有参数名称。因为之前定义模型的时候,我们没有指定参数名称,这里参数名称是自动生成的。当然,我们也可以指定每一个参数名称,方便日后维护。
......@@ -311,7 +311,7 @@ trainer = paddle.trainer.SGD(cost=cost, parameters=parameters,
```
[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__regression_cost_0__]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]
### 训练
......
......@@ -302,7 +302,7 @@ Finally, we can use cosine similarity to calculate the similarity between user c
```python
inference = paddle.layer.cos_sim(a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
cost = paddle.layer.regression_cost(
cost = paddle.layer.mse_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
......@@ -330,7 +330,7 @@ trainer = paddle.trainer.SGD(cost=cost, parameters=parameters,
```text
[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__regression_cost_0__]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]
```
### Training
......
......@@ -310,7 +310,7 @@ inference = paddle.layer.cos_sim(a=usr_combined_features, b=mov_combined_feature
```python
cost = paddle.layer.regression_cost(
cost = paddle.layer.mse_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
......@@ -329,7 +329,7 @@ parameters = paddle.parameters.create(cost)
```
[INFO 2017-03-06 17:12:13,284 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__regression_cost_0__]
[INFO 2017-03-06 17:12:13,287 networks.py:1478] The output order is [__mse_cost_0__]
`parameters`是模型的所有参数集合。他是一个python的dict。我们可以查看到这个网络中的所有参数名称。因为之前定义模型的时候,我们没有指定参数名称,这里参数名称是自动生成的。当然,我们也可以指定每一个参数名称,方便日后维护。
......@@ -353,7 +353,7 @@ trainer = paddle.trainer.SGD(cost=cost, parameters=parameters,
```
[INFO 2017-03-06 17:12:13,378 networks.py:1472] The input order is [user_id, gender_id, age_id, job_id, movie_id, category_id, movie_title, score]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__regression_cost_0__]
[INFO 2017-03-06 17:12:13,379 networks.py:1478] The output order is [__mse_cost_0__]
### 训练
......
......@@ -61,7 +61,7 @@ def main():
inference = paddle.layer.cos_sim(
a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
cost = paddle.layer.regression_cost(
cost = paddle.layer.mse_cost(
input=inference,
label=paddle.layer.data(
name='score', type=paddle.data_type.dense_vector(1)))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册