train_dyn_rnn.py 6.5 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
S
sidgoyal78 已提交
18 19 20 21 22 23 24 25 26
import paddle
import paddle.fluid as fluid
from functools import partial
import numpy as np

CLASS_DIM = 2
EMB_DIM = 128
BATCH_SIZE = 128
LSTM_SIZE = 128
N
Nicky 已提交
27
USE_GPU = False
S
sidgoyal78 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89


def dynamic_rnn_lstm(data, input_dim, class_dim, emb_dim, lstm_size):
    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=lstm_size, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev_hidden = rnn.memory(value=0.0, shape=[lstm_size])
        prev_cell = rnn.memory(value=0.0, shape=[lstm_size])

        def gate_common(ipt, hidden, size):
            gate0 = fluid.layers.fc(input=ipt, size=size, bias_attr=True)
            gate1 = fluid.layers.fc(input=hidden, size=size, bias_attr=False)
            return gate0 + gate1

        forget_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        input_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                        lstm_size))
        output_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                         lstm_size))
        cell_gate = fluid.layers.sigmoid(x=gate_common(word, prev_hidden,
                                                       lstm_size))

        cell = forget_gate * prev_cell + input_gate * cell_gate
        hidden = output_gate * fluid.layers.tanh(x=cell)
        rnn.update_memory(prev_cell, cell)
        rnn.update_memory(prev_hidden, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    prediction = fluid.layers.fc(input=last, size=class_dim, act="softmax")
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    pred = dynamic_rnn_lstm(data, dict_dim, CLASS_DIM, EMB_DIM, LSTM_SIZE)
    return pred


def train_program(word_dict):
    prediction = inference_program(word_dict)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


def train(use_cuda, train_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
90
    print("Loading IMDB word dict....")
S
sidgoyal78 已提交
91
    word_dict = paddle.dataset.imdb.word_dict()
92 93 94 95 96 97 98 99 100 101 102

    print("Reading training data....")
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=BATCH_SIZE)

    print("Reading testing data....")
    test_reader = paddle.batch(
        paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

S
sidgoyal78 已提交
103 104 105 106 107
    trainer = fluid.Trainer(
        train_func=partial(train_program, word_dict),
        place=place,
        optimizer_func=optimizer_func)

108 109
    feed_order = ['words', 'label']

S
sidgoyal78 已提交
110
    def event_handler(event):
111 112 113 114
        if isinstance(event, fluid.EndStepEvent):
            if event.step % 10 == 0:
                avg_cost, acc = trainer.test(
                    reader=test_reader, feed_order=feed_order)
S
sidgoyal78 已提交
115

116 117 118 119 120 121 122 123
                print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                    event.step, avg_cost, acc))

                print("Step {0}, Epoch {1} Metrics {2}".format(
                    event.step, event.epoch, map(np.array, event.metrics)))

        elif isinstance(event, fluid.EndEpochEvent):
            trainer.save_params(params_dirname)
S
sidgoyal78 已提交
124 125 126 127 128

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
129
        feed_order=feed_order)
S
sidgoyal78 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

    inferencer = fluid.Inferencer(
        infer_func=partial(inference_program, word_dict),
        param_path=params_dirname,
        place=place)

    # Setup input by creating LoDTensor to represent sequence of words.
    # Here each word is the basic element of the LoDTensor and the shape of 
    # each word (base_shape) should be [1] since it is simply an index to 
    # look up for the corresponding word vector.
    # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
    # which has only one lod level. Then the created LoDTensor will have only 
    # one higher level structure (sequence of words, or sentence) than the basic 
    # element (word). Hence the LoDTensor will hold data for three sentences of 
    # length 3, 4 and 2, respectively. 
    # Note that lod info should be a list of lists.
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

    reviews_str = [
        'read the book forget the movie', 'this is a great movie',
        'this is very bad'
    ]
    reviews = [c.split() for c in reviews_str]

    UNK = word_dict['<unk>']
    lod = []
    for c in reviews:
        lod.append([word_dict.get(words, UNK) for words in c])

    base_shape = [[len(c) for c in lod]]

    tensor_words = fluid.create_lod_tensor(lod, base_shape, place)
S
sidgoyal78 已提交
166
    results = inferencer.infer({'words': tensor_words})
167 168 169 170

    for i, r in enumerate(results[0]):
        print("Predict probability of ", r[0], " to be positive and ", r[1],
              " to be negative for review \'", reviews_str[i], "\'")
S
sidgoyal78 已提交
171 172 173 174 175 176 177 178 179 180 181


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_conv.inference.model"
    train(use_cuda, train_program, params_dirname)
    infer(use_cuda, inference_program, params_dirname)


if __name__ == '__main__':
W
Wang,Jeff 已提交
182
    use_cuda = False  # set to True if training with GPU
183
    main(use_cuda)