README.en.md 20.3 KB
Newer Older
Z
Zhuoyuan 已提交
1 2
# Sentiment Analysis

C
caoying03 已提交
3
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
Z
Zhuoyuan 已提交
4

L
liaogang 已提交
5 6
## Background

7
In natural language processing, sentiment analysis refers to determining the emotion expressed in a piece of text. The text can be a sentence, a paragraph, or a document. Emotion categorization can be binary -- positive/negative or happy/sad -- or in three classes -- positive/neutral/negative. Sentiment analysis is applicable in a wide range of services, such as e-commerce sites like Amazon and Taobao, hospitality services like Airbnb and hotels.com, and movie rating sites like Rotten Tomatoes and IMDB. It can be used to gauge from the reviews how the customers feel about the product. Table 1 illustrates an example of sentiment analysis in movie reviews:
Z
Zhuoyuan 已提交
8 9 10 11 12 13 14 15 16 17

| Movie Review       | Category  |
| --------     | -----  |
| Best movie of Xiaogang Feng in recent years!| Positive |
| Pretty bad. Feels like a tv-series from a local TV-channel     | Negative |
| Politically correct version of Taken ... and boring as Heck| Negative|
|delightful, mesmerizing, and completely unexpected. The plot is nicely designed.|Positive|

<p align="center">Table 1 Sentiment Analysis in Movie Reviews</p>

18
In natural language processing, sentiment analysis can be categorized as a **Text Classification problem**, i.e., to categorize a piece of text to a specific class. It involves two related tasks: text representation and classification. Before the emergence of deep learning techniques, the mainstream methods for text representation include BOW (*bag of words*) and topic modeling, while the latter contain SVM (*support vector machine*) and LR (*logistic regression*).
Z
Zhuoyuan 已提交
19

20
The BOW model does not capture all the information in a piece of text, as it ignores syntax and grammar and just treats the text as a set of words. For example, “this movie is extremely bad“ and “boring, dull, and empty work” describe very similar semantic meaning, yet their BOW representations have with little similarity. Furthermore, “the movie is bad“ and “the movie is not bad“ have high similarity with BOW features, but they express completely opposite semantics.
Z
Zhuoyuan 已提交
21

22
This chapter introduces a deep learning model that handles these issues in BOW. Our model embeds texts into a low-dimensional space and takes word order into consideration. It is an end-to-end framework and it has large performance improvement over traditional methods \[[1](#Reference)\].
Z
Zhuoyuan 已提交
23 24

## Model Overview
L
liaogang 已提交
25

26
The model we used in this chapter uses **Convolutional Neural Networks** (**CNNs**) and **Recurrent Neural Networks** (**RNNs**) with some specific extensions.
Z
Zhuoyuan 已提交
27 28


29
### Revisit to the Convolutional Neural Networks for Texts (CNN)
L
liaogang 已提交
30

31
The convolutional neural network for texts is introduced in chapter [recommender_system](https://github.com/PaddlePaddle/book/tree/develop/05.recommender_system), here we make a brief overview.
Z
Zhuoyuan 已提交
32

33
CNN mainly contains convolution and pooling operation, with versatile combinations in various applications. We first apply the convolution operation: we apply the kernel in each window, extracting features. Convolving by the kernel at every window produces a feature map. Next, we apply *max pooling* over time to represent the whole sentence, which is the maximum element across the feature map. In real applications, we will apply multiple CNN kernels on the sentences. It can be implemented efficiently by concatenating the kernels together as a matrix. Also, we can use CNN kernels with different kernel size. Finally, concatenating the resulting features produces a fixed-length representation, which can be combined with a softmax to form the model for the sentiment analysis problem.
Z
Zhuoyuan 已提交
34

35
For short texts, the aforementioned CNN model can achieve very high accuracy \[[1](#Reference)\]. If we want to extract more abstract representations, we may apply a deeper CNN model \[[2](#Reference),[3](#Reference)\].
Z
Zhuoyuan 已提交
36

L
liaogang 已提交
37 38
### Recurrent Neural Network (RNN)

39
RNN is an effective model for sequential data. In terms of computability, the RNN is Turing-complete \[[4](#Reference)\]. Since NLP is a classical problem on sequential data, the RNN, especially its variant LSTM\[[5](#Reference)\]), achieves state-of-the-art performance on various NLP tasks, such as language modeling, syntax parsing, POS-tagging, image captioning, dialog, machine translation, and so forth.
Z
Zhuoyuan 已提交
40 41 42

<p align="center">
<img src="image/rnn.png" width = "60%" align="center"/><br/>
43
Figure 1. An illustration of an unfolded RNN in time.
Z
Zhuoyuan 已提交
44
</p>
L
fix bug  
livc 已提交
45

46
As shown in Figure 1, we unfold an RNN: at the $t$-th time step, the network takes two inputs: the $t$-th input vector $\vec{x_t}$ and the latent state from the last time-step $\vec{h_{t-1}}$. From those, it computes the latent state of the current step $\vec{h_t}$. This process is repeated until all inputs are consumed. Denoting the RNN as function $f$, it can be formulated as follows:
Z
Zhuoyuan 已提交
47

48
$$\vec{h_t}=f(\vec{x_t},\vec{h_{t-1}})=\sigma(W_{xh}\vec{x_t}+W_{hh}\vec{h_{h-1}}+\vec{b_h})$$
Z
Zhuoyuan 已提交
49

50
where $W_{xh}$ is the weight matrix to feed into the latent layer; $W_{hh}$ is the latent-to-latent matrix; $b_h$ is the latent bias and $\sigma$ refers to the $sigmoid$ function.
Z
Zhuoyuan 已提交
51

52
In NLP, words are often represented as a one-hot vectors and then mapped to an embedding. The embedded feature goes through an RNN as input $x_t$ at every time step. Moreover, we can add other layers on top of RNN, such as a deep or stacked RNN. Finally, the last latent state may be used as a feature for sentence classification.
Z
Zhuoyuan 已提交
53

L
liaogang 已提交
54 55
### Long-Short Term Memory (LSTM)

56
Training an RNN on long sequential data sometimes leads to the gradient vanishing or exploding\[[6](#)\]. To solve this problem Hochreiter S, Schmidhuber J. (1997) proposed **Long Short Term Memory** (LSTM)\[[5](#Reference)\]).
Z
Zhuoyuan 已提交
57

58
Compared to the structure of a simple RNN, an LSTM includes memory cell $c$, input gate $i$, forget gate $f$ and output gate $o$. These gates and memory cells dramatically improve the ability for the network to handle long sequences. We can formulate the **LSTM-RNN**, denoted as a function $F$, as follows:
Z
Zhuoyuan 已提交
59 60 61 62 63 64 65

$$ h_t=F(x_t,h_{t-1})$$

$F$ contains following formulations\[[7](#Reference)\]
\begin{align}
i_t & = \sigma(W_{xi}x_t+W_{hi}h_{h-1}+W_{ci}c_{t-1}+b_i)\\\\
f_t & = \sigma(W_{xf}x_t+W_{hf}h_{h-1}+W_{cf}c_{t-1}+b_f)\\\\
66
c_t & = f_t\odot c_{t-1}+i_t\odot \tanh(W_{xc}x_t+W_{hc}h_{h-1}+b_c)\\\\
Z
Zhuoyuan 已提交
67
o_t & = \sigma(W_{xo}x_t+W_{ho}h_{h-1}+W_{co}c_{t}+b_o)\\\\
68
h_t & = o_t\odot \tanh(c_t)\\\\
Z
Zhuoyuan 已提交
69 70
\end{align}

71
In the equation,$i_t, f_t, c_t, o_t$ stand for input gate, forget gate, memory cell and output gate, respectively. $W$ and $b$ are model parameters, $\tanh$ is a hyperbolic tangent, and $\odot$ denotes an element-wise product operation. The input gate controls the magnitude of the new input into the memory cell $c$; the forget gate controls the memory propagated from the last time step; the output gate controls the magnitutde of the output. The three gates are computed similarly with different parameters, and they influence memory cell $c$ separately, as shown in Figure 2:
72

Z
Zhuoyuan 已提交
73
<p align="center">
74
<img src="image/lstm_en.png" width = "65%" align="center"/><br/>
75
Figure 2. LSTM at time step $t$ [7].
Z
Zhuoyuan 已提交
76
</p>
77

Z
Zhuoyuan 已提交
78
LSTM enhances the ability of considering long-term reliance, with the help of memory cell and gate. Similar structures are also proposed in Gated Recurrent Unit (GRU)\[[8](Reference)\] with simpler design. **The structures are still similar to RNN, though with some modifications (As shown in Figure 2), i.e., latent status depends on input as well as the latent status of last time-step, and the process goes on recurrently until all input are consumed:**
Z
Zhuoyuan 已提交
79 80 81 82 83

$$ h_t=Recrurent(x_t,h_{t-1})$$
where $Recrurent$ is a simple RNN, GRU or LSTM.

### Stacked Bidirectional LSTM
L
liaogang 已提交
84

Z
Zhuoyuan 已提交
85 86
For vanilla LSTM, $h_t$ contains input information from previous time-step $1..t-1$ context. We can also apply an RNN with reverse-direction to take successive context $t+1…n$ into consideration. Combining constructing deep RNN (deeper RNN can contain more abstract and higher level semantic), we can design structures with deep stacked bidirectional LSTM to model sequential data\[[9](#Reference)\].

87
As shown in Figure 3 (3-layer RNN), odd/even layers are forward/reverse LSTM. Higher layers of LSTM take lower-layers LSTM as input, and the top-layer LSTM produces a fixed length vector by max-pooling (this representation considers contexts from previous and successive words for higher-level abstractions). Finally, we concatenate the output to a softmax layer for classification.
Z
Zhuoyuan 已提交
88 89

<p align="center">
90
<img src="image/stacked_lstm_en.png" width=450><br/>
91
Figure 3. Stacked Bidirectional LSTM for NLP modeling.
Z
Zhuoyuan 已提交
92 93
</p>

L
liaogang 已提交
94
## Dataset
Z
Zhuoyuan 已提交
95

L
liaogang 已提交
96
We use [IMDB](http://ai.stanford.edu/%7Eamaas/data/sentiment/) dataset for sentiment analysis in this tutorial, which consists of 50,000 movie reviews split evenly into 25k train and 25k test sets. In the labeled train/test sets, a negative review has a score <= 4 out of 10, and a positive review has a score >= 7 out of 10.
Z
Zhuoyuan 已提交
97

98
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens`, and `wmt14`, etc. There's no need for us to manually download and preprocess IMDB.
Z
Zhuoyuan 已提交
99

100
After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.
Z
Zhuoyuan 已提交
101 102


L
liaogang 已提交
103
## Model Structure
Z
Zhuoyuan 已提交
104

L
liaogang 已提交
105
### Initialize PaddlePaddle
Z
Zhuoyuan 已提交
106

L
liaogang 已提交
107
We must import and initialize PaddlePaddle (enable/disable GPU, set the number of trainers, etc).
Z
Zhuoyuan 已提交
108

L
liaogang 已提交
109 110 111 112 113 114
```python
import sys
import paddle.v2 as paddle

# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
Z
Zhuoyuan 已提交
115 116
```

L
liaogang 已提交
117
As alluded to in section [Model Overview](#model-overview), here we provide the implementations of both Text CNN and Stacked-bidirectional LSTM models.
Z
Zhuoyuan 已提交
118

L
liaogang 已提交
119
### Text Convolution Neural Network (Text CNN)
Z
Zhuoyuan 已提交
120

L
liaogang 已提交
121
We create a neural network `convolution_net` as the following snippet code.
Z
Zhuoyuan 已提交
122

L
liaogang 已提交
123
Note: `paddle.networks.sequence_conv_pool` includes both convolution and pooling layer operations.
Z
Zhuoyuan 已提交
124 125

```python
L
liaogang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)
    output = paddle.layer.fc(input=[conv_3, conv_4],
                             size=class_dim,
                             act=paddle.activation.Softmax())
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
140 141
```

L
liaogang 已提交
142
1. Define input data and its dimension
Z
Zhuoyuan 已提交
143

L
liaogang 已提交
144
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `convolution_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
145

L
liaogang 已提交
146
1. Define Classifier
Z
Zhuoyuan 已提交
147

L
liaogang 已提交
148
    The above Text CNN network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
149

L
liaogang 已提交
150
1. Define Loss Function
Z
Zhuoyuan 已提交
151

152
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
L
liaogang 已提交
153 154 155 156

#### Stacked bidirectional LSTM

We create a neural network `stacked_lstm_net` as below.
Z
Zhuoyuan 已提交
157 158 159

```python
def stacked_lstm_net(input_dim,
L
liaogang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109
    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    """
    assert stacked_num % 2 == 1

    layer_attr = paddle.attr.Extra(drop_rate=0.5)
    fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
    lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
    relu = paddle.activation.Relu()
    linear = paddle.activation.Linear()

    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    fc1 = paddle.layer.fc(input=emb,
                          size=hid_dim,
                          act=linear,
                          bias_attr=bias_attr)
    lstm1 = paddle.layer.lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = paddle.layer.fc(input=inputs,
                             size=hid_dim,
                             act=linear,
                             param_attr=para_attr,
                             bias_attr=bias_attr)
        lstm = paddle.layer.lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = paddle.layer.pooling(
        input=inputs[0], pooling_type=paddle.pooling.Max())
    lstm_last = paddle.layer.pooling(
        input=inputs[1], pooling_type=paddle.pooling.Max())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
225 226
```

L
liaogang 已提交
227
1. Define input data and its dimension
228

L
liaogang 已提交
229
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `stacked_lstm_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
230

L
liaogang 已提交
231
1. Define Classifier
Z
Zhuoyuan 已提交
232

L
liaogang 已提交
233
    The above stacked bidirectional LSTM network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
234

L
liaogang 已提交
235
1. Define Loss Function
Z
Zhuoyuan 已提交
236

237
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
Z
Zhuoyuan 已提交
238 239


L
liaogang 已提交
240
To reiterate, we can either invoke `convolution_net` or `stacked_lstm_net`.
241

Z
Zhuoyuan 已提交
242
```python
L
liaogang 已提交
243 244 245 246 247 248 249 250
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2

# option 1
cost = convolution_net(dict_dim, class_dim=class_dim)
# option 2
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
Z
Zhuoyuan 已提交
251 252 253 254
```

## Model Training

L
liaogang 已提交
255
### Define Parameters
Z
Zhuoyuan 已提交
256

L
liaogang 已提交
257
First, we create the model parameters according to the previous model configuration `cost`.
Z
Zhuoyuan 已提交
258

L
liaogang 已提交
259 260 261
```python
# create parameters
parameters = paddle.parameters.create(cost)
Z
Zhuoyuan 已提交
262 263
```

L
liaogang 已提交
264
### Create Trainer
Z
Zhuoyuan 已提交
265

L
liaogang 已提交
266 267
Before jumping into creating a training module, algorithm setting is also necessary.
Here we specified `Adam` optimization algorithm via `paddle.optimizer`.
Z
Zhuoyuan 已提交
268

L
liaogang 已提交
269 270 271 272 273 274 275 276 277 278 279
```python
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# create trainer
trainer = paddle.trainer.SGD(cost=cost,
                                parameters=parameters,
                                update_equation=adam_optimizer)
Z
Zhuoyuan 已提交
280 281
```

L
liaogang 已提交
282
### Training
Z
Zhuoyuan 已提交
283

L
liaogang 已提交
284
`paddle.dataset.imdb.train()` will yield records during each pass, after shuffling, a batch input is generated for training.
Z
Zhuoyuan 已提交
285

L
liaogang 已提交
286 287 288 289 290
```python
train_reader = paddle.batch(
    paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
    batch_size=100)
Z
Zhuoyuan 已提交
291

L
liaogang 已提交
292 293
test_reader = paddle.batch(
    lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
Z
Zhuoyuan 已提交
294 295
```

L
liaogang 已提交
296
`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `paddle.dataset.imdb.train()` corresponds to `word` feature.
Z
Zhuoyuan 已提交
297

L
liaogang 已提交
298 299
```python
feeding = {'word': 0, 'label': 1}
Z
Zhuoyuan 已提交
300 301
```

302
Callback function `event_handler` will be invoked to track training progress when a pre-defined event happens.
Z
Zhuoyuan 已提交
303

L
liaogang 已提交
304 305 306 307 308 309 310 311 312 313
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
G
gongweibao 已提交
314
        result = trainer.test(reader=test_reader, feeding=feeding)
L
liaogang 已提交
315
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
Z
Zhuoyuan 已提交
316 317
```

L
liaogang 已提交
318
Finally, we can invoke `trainer.train` to start training:
Z
Zhuoyuan 已提交
319

L
liaogang 已提交
320 321 322 323
```python
trainer.train(
    reader=train_reader,
    event_handler=event_handler,
H
Helin Wang 已提交
324
    feeding=feeding,
L
liaogang 已提交
325
    num_passes=10)
Z
Zhuoyuan 已提交
326 327 328
```


L
liaogang 已提交
329
## Conclusion
Z
Zhuoyuan 已提交
330

331
In this chapter, we use sentiment analysis as an example to introduce applying deep learning models on end-to-end short text classification, as well as how to use PaddlePaddle to implement the model. Meanwhile, we briefly introduce two models for text processing: CNN and RNN. In following chapters, we will see how these models can be applied in other tasks.
L
liaogang 已提交
332

Z
Zhuoyuan 已提交
333
## Reference
L
liaogang 已提交
334

Z
Zhuoyuan 已提交
335 336 337 338 339 340 341 342 343 344 345
1. Kim Y. [Convolutional neural networks for sentence classification](http://arxiv.org/pdf/1408.5882)[J]. arXiv preprint arXiv:1408.5882, 2014.
2. Kalchbrenner N, Grefenstette E, Blunsom P. [A convolutional neural network for modelling sentences](http://arxiv.org/pdf/1404.2188.pdf?utm_medium=App.net&utm_source=PourOver)[J]. arXiv preprint arXiv:1404.2188, 2014.
3. Yann N. Dauphin, et al. [Language Modeling with Gated Convolutional Networks](https://arxiv.org/pdf/1612.08083v1.pdf)[J] arXiv preprint arXiv:1612.08083, 2016.
4. Siegelmann H T, Sontag E D. [On the computational power of neural nets](http://research.cs.queensu.ca/home/akl/cisc879/papers/SELECTED_PAPERS_FROM_VARIOUS_SOURCES/05070215382317071.pdf)[C]//Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992: 440-449.
5. Hochreiter S, Schmidhuber J. [Long short-term memory](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)[J]. Neural computation, 1997, 9(8): 1735-1780.
6. Bengio Y, Simard P, Frasconi P. [Learning long-term dependencies with gradient descent is difficult](http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf)[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
7. Graves A. [Generating sequences with recurrent neural networks](http://arxiv.org/pdf/1308.0850)[J]. arXiv preprint arXiv:1308.0850, 2013.
8. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://arxiv.org/pdf/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
9. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
346
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.