infer.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.fluid.layers as pd
from paddle.fluid.executor import Executor
import os

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
hidden_dim = 32
word_dim = 32
batch_size = 2
max_length = 8
topk_size = 50
beam_size = 2

is_sparse = True
decoder_size = hidden_dim
model_save_dir = "machine_translation.inference.model"


def encoder():
    src_word_id = pd.data(
        name="src_word_id", shape=[1], dtype='int64', lod_level=1)
    src_embedding = pd.embedding(
        input=src_word_id,
        size=[dict_size, word_dim],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr=fluid.ParamAttr(name='vemb'))

    fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
    lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
    encoder_out = pd.sequence_last_step(input=lstm_hidden0)
    return encoder_out


def decode(context):
    init_state = context
    array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
    counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)

    # fill the first element with init_state
    state_array = pd.create_array('float32')
    pd.array_write(init_state, array=state_array, i=counter)

    # ids, scores as memory
    ids_array = pd.create_array('int64')
    scores_array = pd.create_array('float32')

    init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
    init_scores = pd.data(
        name="init_scores", shape=[1], dtype="float32", lod_level=2)

    pd.array_write(init_ids, array=ids_array, i=counter)
    pd.array_write(init_scores, array=scores_array, i=counter)

    cond = pd.less_than(x=counter, y=array_len)

    while_op = pd.While(cond=cond)
    with while_op.block():
        pre_ids = pd.array_read(array=ids_array, i=counter)
        pre_state = pd.array_read(array=state_array, i=counter)
        pre_score = pd.array_read(array=scores_array, i=counter)

        # expand the lod of pre_state to be the same with pre_score
        pre_state_expanded = pd.sequence_expand(pre_state, pre_score)

        pre_ids_emb = pd.embedding(
            input=pre_ids,
            size=[dict_size, word_dim],
            dtype='float32',
            is_sparse=is_sparse,
            param_attr=fluid.ParamAttr(name='vemb'))

        # use rnn unit to update rnn
        current_state = pd.fc(
            input=[pre_state_expanded, pre_ids_emb],
            size=decoder_size,
            act='tanh')
        current_state_with_lod = pd.lod_reset(x=current_state, y=pre_score)
        # use score to do beam search
        current_score = pd.fc(
            input=current_state_with_lod, size=target_dict_dim, act='softmax')
101 102 103 104
        topk_scores, topk_indices = pd.topk(current_score, k=beam_size)
        # calculate accumulated scores after topk to reduce computation cost
        accu_scores = pd.elementwise_add(
            x=pd.log(topk_scores), y=pd.reshape(pre_score, shape=[-1]), axis=0)
105
        selected_ids, selected_scores = pd.beam_search(
106 107 108 109 110 111 112
            pre_ids,
            pre_score,
            topk_indices,
            accu_scores,
            beam_size,
            end_id=10,
            level=0)
113 114 115 116 117 118 119 120 121 122 123 124 125

        with pd.Switch() as switch:
            with switch.case(pd.is_empty(selected_ids)):
                pd.fill_constant(
                    shape=[1], value=0, dtype='bool', force_cpu=True, out=cond)
            with switch.default():
                pd.increment(x=counter, value=1, in_place=True)

                # update the memories
                pd.array_write(current_state, array=state_array, i=counter)
                pd.array_write(selected_ids, array=ids_array, i=counter)
                pd.array_write(selected_scores, array=scores_array, i=counter)

126 127 128 129 130
                # update the break condition: up to the max length or all candidates of
                # source sentences have ended.
                length_cond = pd.less_than(x=counter, y=array_len)
                finish_cond = pd.logical_not(pd.is_empty(x=selected_ids))
                pd.logical_and(x=length_cond, y=finish_cond, out=cond)
131 132

    translation_ids, translation_scores = pd.beam_search_decode(
133
        ids=ids_array, scores=scores_array, beam_size=beam_size, end_id=10)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

    return translation_ids, translation_scores


def decode_main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = Executor(place)
    exe.run(framework.default_startup_program())

    context = encoder()
    translation_ids, translation_scores = decode(context)
    fluid.io.load_persistables(executor=exe, dirname=model_save_dir)

    init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
    init_scores_data = np.array(
        [1. for _ in range(batch_size)], dtype='float32')
    init_ids_data = init_ids_data.reshape((batch_size, 1))
    init_scores_data = init_scores_data.reshape((batch_size, 1))
    init_lod = [1] * batch_size
    init_lod = [init_lod, init_lod]

    init_ids = fluid.create_lod_tensor(init_ids_data, init_lod, place)
    init_scores = fluid.create_lod_tensor(init_scores_data, init_lod, place)

    test_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.test(dict_size), buf_size=1000),
        batch_size=batch_size)

    feed_order = ['src_word_id']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

    src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)

    for data in test_data():
        feed_data = map(lambda x: [x[0]], data)
        feed_dict = feeder.feed(feed_data)
        feed_dict['init_ids'] = init_ids
        feed_dict['init_scores'] = init_scores

        results = exe.run(
            framework.default_main_program(),
            feed=feed_dict,
            fetch_list=[translation_ids, translation_scores],
            return_numpy=False)

        result_ids = np.array(results[0])
        result_scores = np.array(results[1])

        print("Original sentence:")
191 192 193 194 195 196 197 198
        print(" ".join([src_dict[w] for w in feed_data[0][0][1:-1]]))
        print("Translated score and sentence:")
        for i in xrange(beam_size):
            start_pos = result_ids_lod[1][i] + 1
            end_pos = result_ids_lod[1][i + 1]
            print("%d\t%.4f\t%s\n" % (
                i + 1, result_scores[end_pos - 1],
                " ".join([trg_dict[w] for w in result_ids[start_pos:end_pos]])))
199 200 201 202 203 204 205 206 207 208 209

        break


def main(use_cuda):
    decode_main(False)  # Beam Search does not support CUDA


if __name__ == '__main__':
    use_cuda = os.getenv('WITH_GPU', '0') != '0'
    main(use_cuda)