Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
08d5d2e9
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08d5d2e9
编写于
7月 18, 2018
作者:
C
Chen Weihang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
08 Style: polish formula and print format
上级
d4414cbb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
45 addition
and
24 deletion
+45
-24
08.machine_translation/README.cn.md
08.machine_translation/README.cn.md
+9
-5
08.machine_translation/README.md
08.machine_translation/README.md
+9
-5
08.machine_translation/index.cn.html
08.machine_translation/index.cn.html
+9
-5
08.machine_translation/index.html
08.machine_translation/index.html
+9
-5
08.machine_translation/infer.py
08.machine_translation/infer.py
+9
-4
未找到文件。
08.machine_translation/README.cn.md
浏览文件 @
08d5d2e9
...
...
@@ -85,7 +85,7 @@
2.
将$z_{i+1}$通过
`softmax`
归一化,得到目标语言序列的第$i+1$个单词的概率分布$p_{i+1}$。概率分布公式如下:
$$p
\l
eft ( u_{i+1}|u_{
<
i+1},
\m
athbf{x}
\r
ight )=softmax(W_sz_{i+1}+b_z)$$
$$p
\l
eft ( u_{i+1}|u_{
<
i+1},
\m
athbf{x}
\r
ight )=softmax(W_sz_{i+1}+b_z)$$
其中$W_sz_{i+1}+b_z$是对每个可能的输出单词进行打分,再用softmax归一化就可以得到第$i+1$个词的概率$p_{i+1}$。
...
...
@@ -132,6 +132,7 @@
下面我们开始根据输入数据的形式配置模型。首先引入所需的库函数以及定义全局变量。
```
python
from
__future__
import
print_function
import
contextlib
import
numpy
as
np
...
...
@@ -437,10 +438,13 @@ for data in test_data():
result_scores
=
np
.
array
(
results
[
1
])
print
(
"Original sentence:"
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
]]))
print
(
"Translated sentence:"
)
print
(
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
]))
print
(
"Corresponding score: "
,
result_scores
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
][
1
:
-
1
]]))
print
(
"Translated score and sentence:"
)
for
i
in
xrange
(
beam_size
):
start_pos
=
result_ids_lod
[
1
][
i
]
+
1
end_pos
=
result_ids_lod
[
1
][
i
+
1
]
print
(
"%d
\t
%.4f
\t
%s
\n
"
%
(
i
+
1
,
result_scores
[
end_pos
-
1
],
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
[
start_pos
:
end_pos
]])))
break
```
...
...
08.machine_translation/README.md
浏览文件 @
08d5d2e9
...
...
@@ -114,7 +114,7 @@ The goal of the decoder is to maximize the probability of the next correct word
2.
Calculate the probability $p_{i+1}$ for the $i+1$-th word in the target language sequence by normalizing $z_{i+1}$ using
`softmax`
as follows
$$p
\l
eft ( u_{i+1}|u_{
<
i+1},
\m
athbf{x}
\r
ight )=softmax(W_sz_{i+1}+b_z)$$
$$p
\l
eft ( u_{i+1}|u_{
<
i+1},
\m
athbf{x}
\r
ight )=softmax(W_sz_{i+1}+b_z)$$
where $W_sz_{i+1}+b_z$ scores each possible words and is then normalized via softmax to produce the probability $p_{i+1}$ for the $i+1$-th word.
...
...
@@ -169,6 +169,7 @@ This subset has 193319 instances of training data and 6003 instances of test dat
Our program starts with importing necessary packages and initializing some global variables:
```
python
from
__future__
import
print_function
import
contextlib
import
numpy
as
np
...
...
@@ -485,10 +486,13 @@ for data in test_data():
result_scores
=
np
.
array
(
results
[
1
])
print
(
"Original sentence:"
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
]]))
print
(
"Translated sentence:"
)
print
(
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
]))
print
(
"Corresponding score: "
,
result_scores
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
][
1
:
-
1
]]))
print
(
"Translated score and sentence:"
)
for
i
in
xrange
(
beam_size
):
start_pos
=
result_ids_lod
[
1
][
i
]
+
1
end_pos
=
result_ids_lod
[
1
][
i
+
1
]
print
(
"%d
\t
%.4f
\t
%s
\n
"
%
(
i
+
1
,
result_scores
[
end_pos
-
1
],
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
[
start_pos
:
end_pos
]])))
break
```
...
...
08.machine_translation/index.cn.html
浏览文件 @
08d5d2e9
...
...
@@ -127,7 +127,7 @@
2. 将$z_{i+1}$通过`softmax`归一化,得到目标语言序列的第$i+1$个单词的概率分布$p_{i+1}$。概率分布公式如下:
$$p\left ( u_{i+1}|u_{
<
i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
$$p\left ( u_{i+1}|u_{
<
i
+1},\
mathbf
{
x
}
\
right
)=
softmax(W_sz_{i+1}+b_z)$$
其中
$
W_sz_
{
i
+1}+
b_z
$
是对每个可能的输出单词进行打分
,
再用softmax归一化就可以得到第
$
i
+1$
个词的概率
$
p_
{
i
+1}$。
...
...
@@ -174,6 +174,7 @@
下面我们开始根据输入数据的形式配置模型。首先引入所需的库函数以及定义全局变量。
```python
from __future__ import print_function
import contextlib
import numpy as np
...
...
@@ -479,10 +480,13 @@ for data in test_data():
result_scores = np.array(results[1])
print("Original sentence:")
print(" ".join([src_dict[w] for w in feed_data[0][0]]))
print("Translated sentence:")
print(" ".join([trg_dict[w] for w in result_ids]))
print("Corresponding score: ", result_scores)
print(" ".join([src_dict[w] for w in feed_data[0][0][1:-1]]))
print("Translated score and sentence:")
for i in xrange(beam_size):
start_pos = result_ids_lod[1][i] + 1
end_pos = result_ids_lod[1][i+1]
print("%d\t%.4f\t%s\n" % (i+1, result_scores[end_pos-1],
" ".join([trg_dict[w] for w in result_ids[start_pos:end_pos]])))
break
```
...
...
08.machine_translation/index.html
浏览文件 @
08d5d2e9
...
...
@@ -156,7 +156,7 @@ The goal of the decoder is to maximize the probability of the next correct word
2. Calculate the probability $p_{i+1}$ for the $i+1$-th word in the target language sequence by normalizing $z_{i+1}$ using `softmax` as follows
$$p\left ( u_{i+1}|u_{
<
i+1},\mathbf{x} \right )=softmax(W_sz_{i+1}+b_z)$$
$$p\left ( u_{i+1}|u_{
<
i
+1},\
mathbf
{
x
}
\
right
)=
softmax(W_sz_{i+1}+b_z)$$
where
$
W_sz_
{
i
+1}+
b_z
$
scores
each
possible
words
and
is
then
normalized
via
softmax
to
produce
the
probability
$
p_
{
i
+1}$
for
the
$
i
+1$
-th
word.
...
...
@@ -211,6 +211,7 @@ This subset has 193319 instances of training data and 6003 instances of test dat
Our program starts with importing necessary packages and initializing some global variables:
```python
from __future__ import print_function
import contextlib
import numpy as np
...
...
@@ -527,10 +528,13 @@ for data in test_data():
result_scores = np.array(results[1])
print("Original sentence:")
print(" ".join([src_dict[w] for w in feed_data[0][0]]))
print("Translated sentence:")
print(" ".join([trg_dict[w] for w in result_ids]))
print("Corresponding score: ", result_scores)
print(" ".join([src_dict[w] for w in feed_data[0][0][1:-1]]))
print("Translated score and sentence:")
for i in xrange(beam_size):
start_pos = result_ids_lod[1][i] + 1
end_pos = result_ids_lod[1][i+1]
print("%d\t%.4f\t%s\n" % (i+1, result_scores[end_pos-1],
" ".join([trg_dict[w] for w in result_ids[start_pos:end_pos]])))
break
```
...
...
08.machine_translation/infer.py
浏览文件 @
08d5d2e9
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -187,10 +188,14 @@ def decode_main(use_cuda):
result_scores
=
np
.
array
(
results
[
1
])
print
(
"Original sentence:"
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
]]))
print
(
"Translated sentence:"
)
print
(
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
]))
print
(
"Corresponding score: "
,
result_scores
)
print
(
" "
.
join
([
src_dict
[
w
]
for
w
in
feed_data
[
0
][
0
][
1
:
-
1
]]))
print
(
"Translated score and sentence:"
)
for
i
in
xrange
(
beam_size
):
start_pos
=
result_ids_lod
[
1
][
i
]
+
1
end_pos
=
result_ids_lod
[
1
][
i
+
1
]
print
(
"%d
\t
%.4f
\t
%s
\n
"
%
(
i
+
1
,
result_scores
[
end_pos
-
1
],
" "
.
join
([
trg_dict
[
w
]
for
w
in
result_ids
[
start_pos
:
end_pos
]])))
break
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录