train.py 2.9 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import sys
L
liaogang 已提交
16

L
liaogang 已提交
17
import paddle.v2 as paddle
L
liaogang 已提交
18

L
liaogang 已提交
19 20
from vgg import vgg_bn_drop
from resnet import resnet_cifar10
L
liaogang 已提交
21 22 23 24 25 26 27


def main():
    datadim = 3 * 32 * 32
    classdim = 10

    # PaddlePaddle init
L
liaogang 已提交
28
    paddle.init(use_gpu=False, trainer_count=1)
L
liaogang 已提交
29 30 31 32 33 34

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(datadim))

    # Add neural network config
    # option 1. resnet
L
liaogang 已提交
35
    # net = resnet_cifar10(image, depth=32)
L
liaogang 已提交
36
    # option 2. vgg
L
liaogang 已提交
37
    net = vgg_bn_drop(image)
L
liaogang 已提交
38

39 40
    out = paddle.layer.fc(
        input=net, size=classdim, act=paddle.activation.Softmax())
L
liaogang 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(classdim))
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    momentum_optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
        learning_rate=0.1 / 128.0,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=50000 * 100,
        learning_rate_schedule='discexp',
        batch_size=128)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(
L
liaogang 已提交
70
                reader=paddle.batch(
L
liaogang 已提交
71
                    paddle.dataset.cifar.test10(), batch_size=128),
L
liaogang 已提交
72 73
                feeding={'image': 0,
                         'label': 1})
L
liaogang 已提交
74 75 76
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    # Create trainer
77 78
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=momentum_optimizer)
L
liaogang 已提交
79
    trainer.train(
L
liaogang 已提交
80
        reader=paddle.batch(
L
liaogang 已提交
81 82 83
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(), buf_size=50000),
            batch_size=128),
L
liaogang 已提交
84
        num_passes=200,
L
liaogang 已提交
85
        event_handler=event_handler,
L
liaogang 已提交
86 87
        feeding={'image': 0,
                 'label': 1})
L
liaogang 已提交
88 89 90 91


if __name__ == '__main__':
    main()