Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
book
提交
4a166a94
B
book
项目概览
PaddlePaddle
/
book
通知
16
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
40
列表
看板
标记
里程碑
合并请求
37
Wiki
5
Wiki
分析
仓库
DevOps
项目成员
Pages
B
book
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
40
Issue
40
列表
看板
标记
里程碑
合并请求
37
合并请求
37
Pages
分析
分析
仓库分析
DevOps
Wiki
5
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a166a94
编写于
3月 02, 2017
作者:
L
liaogang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add image_classification api v2
上级
f9b6e8e0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
212 addition
and
0 deletion
+212
-0
image_classification/api_v2_resnet.py
image_classification/api_v2_resnet.py
+74
-0
image_classification/api_v2_train.py
image_classification/api_v2_train.py
+91
-0
image_classification/api_v2_vgg.py
image_classification/api_v2_vgg.py
+47
-0
未找到文件。
image_classification/api_v2_resnet.py
0 → 100644
浏览文件 @
4a166a94
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2
as
paddle
__all__
=
[
'resnet_cifar10'
]
def
conv_bn_layer
(
input
,
ch_out
,
filter_size
,
stride
,
padding
,
active_type
=
paddle
.
activation
.
Relu
(),
ch_in
=
None
):
tmp
=
paddle
.
layer
.
img_conv
(
input
=
input
,
filter_size
=
filter_size
,
num_channels
=
ch_in
,
num_filters
=
ch_out
,
stride
=
stride
,
padding
=
padding
,
act
=
paddle
.
activation
.
Linear
(),
bias_attr
=
False
)
return
paddle
.
layer
.
batch_norm
(
input
=
tmp
,
act
=
active_type
)
def
shortcut
(
ipt
,
n_in
,
n_out
,
stride
):
if
n_in
!=
n_out
:
return
conv_bn_layer
(
ipt
,
n_out
,
1
,
stride
,
0
,
paddle
.
activation
.
Linear
())
else
:
return
ipt
def
basicblock
(
ipt
,
ch_out
,
stride
):
ch_in
=
ch_out
*
2
tmp
=
conv_bn_layer
(
ipt
,
ch_out
,
3
,
stride
,
1
)
tmp
=
conv_bn_layer
(
tmp
,
ch_out
,
3
,
1
,
1
,
paddle
.
activation
.
Linear
())
short
=
shortcut
(
ipt
,
ch_in
,
ch_out
,
stride
)
return
paddle
.
layer
.
addto
(
input
=
[
tmp
,
short
],
act
=
paddle
.
activation
.
Relu
())
def
layer_warp
(
block_func
,
ipt
,
features
,
count
,
stride
):
tmp
=
block_func
(
ipt
,
features
,
stride
)
for
i
in
range
(
1
,
count
):
tmp
=
block_func
(
tmp
,
features
,
1
)
return
tmp
def
resnet_cifar10
(
ipt
,
depth
=
32
):
# depth should be one of 20, 32, 44, 56, 110, 1202
assert
(
depth
-
2
)
%
6
==
0
n
=
(
depth
-
2
)
/
6
nStages
=
{
16
,
64
,
128
}
conv1
=
conv_bn_layer
(
ipt
,
ch_in
=
3
,
ch_out
=
16
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
64
,
n
,
2
)
pool
=
paddle
.
layer
.
img_pool
(
input
=
res3
,
pool_size
=
8
,
stride
=
1
,
pool_type
=
paddle
.
pooling
.
Avg
())
return
pool
image_classification/api_v2_train.py
0 → 100644
浏览文件 @
4a166a94
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
import
sys
import
paddle.v2
as
paddle
from
api_v2_vgg
import
vgg_bn_drop
from
api_v2_resnet
import
resnet_cifar10
def
main
():
datadim
=
3
*
32
*
32
classdim
=
10
# PaddlePaddle init
paddle
.
init
(
use_gpu
=
True
,
trainer_count
=
1
)
image
=
paddle
.
layer
.
data
(
name
=
"image"
,
type
=
paddle
.
data_type
.
dense_vector
(
datadim
))
# Add neural network config
# option 1. resnet
net
=
resnet_cifar10
(
image
,
depth
=
32
)
# option 2. vgg
# net = vgg_bn_drop(image)
out
=
paddle
.
layer
.
fc
(
input
=
net
,
size
=
classdim
,
act
=
paddle
.
activation
.
Softmax
())
lbl
=
paddle
.
layer
.
data
(
name
=
"label"
,
type
=
paddle
.
data_type
.
integer_value
(
classdim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
out
,
label
=
lbl
)
# Create parameters
parameters
=
paddle
.
parameters
.
create
(
cost
)
# Create optimizer
momentum_optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0.9
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
0.0002
*
128
),
learning_rate
=
0.1
/
128.0
,
learning_rate_decay_a
=
0.1
,
learning_rate_decay_b
=
50000
*
100
,
learning_rate_schedule
=
'discexp'
,
batch_size
=
128
)
# End batch and end pass event handler
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
result
=
trainer
.
test
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
dataset
.
cifar
.
test10
(),
batch_size
=
128
),
reader_dict
=
{
'image'
:
0
,
'label'
:
1
})
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
# Create trainer
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
cost
,
parameters
=
parameters
,
update_equation
=
momentum_optimizer
)
trainer
.
train
(
reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
(),
buf_size
=
50000
),
batch_size
=
128
),
num_passes
=
5
,
event_handler
=
event_handler
,
reader_dict
=
{
'image'
:
0
,
'label'
:
1
})
if
__name__
==
'__main__'
:
main
()
image_classification/api_v2_vgg.py
0 → 100644
浏览文件 @
4a166a94
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.v2
as
paddle
__all__
=
[
'vgg_bn_drop'
]
def
vgg_bn_drop
(
input
):
def
conv_block
(
ipt
,
num_filter
,
groups
,
dropouts
,
num_channels
=
None
):
return
paddle
.
networks
.
img_conv_group
(
input
=
ipt
,
num_channels
=
num_channels
,
pool_size
=
2
,
pool_stride
=
2
,
conv_num_filter
=
[
num_filter
]
*
groups
,
conv_filter_size
=
3
,
conv_act
=
paddle
.
activation
.
Relu
(),
conv_with_batchnorm
=
True
,
conv_batchnorm_drop_rate
=
dropouts
,
pool_type
=
paddle
.
pooling
.
Max
())
conv1
=
conv_block
(
input
,
64
,
2
,
[
0.3
,
0
],
3
)
conv2
=
conv_block
(
conv1
,
128
,
2
,
[
0.4
,
0
])
conv3
=
conv_block
(
conv2
,
256
,
3
,
[
0.4
,
0.4
,
0
])
conv4
=
conv_block
(
conv3
,
512
,
3
,
[
0.4
,
0.4
,
0
])
conv5
=
conv_block
(
conv4
,
512
,
3
,
[
0.4
,
0.4
,
0
])
drop
=
paddle
.
layer
.
dropout
(
input
=
conv5
,
dropout_rate
=
0.5
)
fc1
=
paddle
.
layer
.
fc
(
input
=
drop
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
bn
=
paddle
.
layer
.
batch_norm
(
input
=
fc1
,
act
=
paddle
.
activation
.
Relu
(),
layer_attr
=
paddle
.
attr
.
Extra
(
drop_rate
=
0.5
))
fc2
=
paddle
.
layer
.
fc
(
input
=
bn
,
size
=
512
,
act
=
paddle
.
activation
.
Linear
())
return
fc2
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录