train.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
H
Helin Wang 已提交
14 15

import paddle.v2 as paddle
16 17 18 19
import paddle.fluid as fluid
import numpy
import sys
from functools import partial
H
Helin Wang 已提交
20

21 22
import math
import os
D
dzhwinter 已提交
23

24 25
EMBED_SIZE = 32
HIDDEN_SIZE = 256
H
Helin Wang 已提交
26
N = 5
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
BATCH_SIZE = 100

# can use CPU or GPU
use_cuda = os.getenv('WITH_GPU', '0') != '0'

word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)


def inference_program(is_sparse):
    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    fourth_word = fluid.layers.data(name='fourthw', shape=[1], dtype='int64')

    embed_first = fluid.layers.embedding(
        input=first_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_second = fluid.layers.embedding(
        input=second_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_third = fluid.layers.embedding(
        input=third_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
    embed_fourth = fluid.layers.embedding(
        input=fourth_word,
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')

    concat_embed = fluid.layers.concat(
        input=[embed_first, embed_second, embed_third, embed_fourth], axis=1)
    hidden1 = fluid.layers.fc(
        input=concat_embed, size=HIDDEN_SIZE, act='sigmoid')
    predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
    return predict_word


def train_program(is_sparse):
    # The declaration of 'next_word' must be after the invoking of inference_program,
    # or the data input order of train program would be [next_word, firstw, secondw,
    # thirdw, fourthw], which is not correct.
    predict_word = inference_program(is_sparse)
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')
    cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
    avg_cost = fluid.layers.mean(cost)
    return avg_cost


def optimizer_func():
    return fluid.optimizer.AdagradOptimizer(
        learning_rate=3e-3,
        regularization=fluid.regularizer.L2DecayRegularizer(8e-4))
H
Helin Wang 已提交
90 91


92 93 94 95 96 97 98
def train(use_cuda, train_program, params_dirname):
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
99

H
Helin Wang 已提交
100
    def event_handler(event):
101 102 103 104 105
        if isinstance(event, fluid.EndStepEvent):
            outs = trainer.test(
                reader=test_reader,
                feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])
            avg_cost = outs[0]
P
Peng Li 已提交
106

107 108 109
            if event.step % 10 == 0:
                print "Step %d: Average Cost %f" % (event.step, avg_cost)

110 111 112
            # If average cost is lower than 5.8, we consider the model good enough to stop.
            # Note 5.8 is a relatively high value. In order to get a better model, one should
            # aim for avg_cost lower than 3.5. But the training could take longer time.
113
            if avg_cost < 5.8:
114 115
                trainer.save_params(params_dirname)
                trainer.stop()
H
Helin Wang 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            if math.isnan(avg_cost):
                sys.exit("got NaN loss, training failed.")

    trainer = fluid.Trainer(
        train_func=train_program,
        # optimizer=fluid.optimizer.SGD(learning_rate=0.001),
        optimizer_func=optimizer_func,
        place=place)

    trainer.train(
        reader=train_reader,
        num_epochs=1,
        event_handler=event_handler,
        feed_order=['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw'])


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    inferencer = fluid.Inferencer(
        infer_func=inference_program, param_path=params_dirname, place=place)

    # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
    # is simply an index to look up for the corresponding word vector and hence
    # the shape of word (base_shape) should be [1]. The length-based level of
    # detail (lod) info of each LoDtensor should be [[1]] meaning there is only
    # one lod_level and there is only one sequence of one word on this level.
    # Note that lod info should be a list of lists.
144 145 146 147 148

    data1 = [[211]]  # 'among'
    data2 = [[6]]  # 'a'
    data3 = [[96]]  # 'group'
    data4 = [[4]]  # 'of'
149
    lod = [[1]]
150 151 152 153 154

    first_word = fluid.create_lod_tensor(data1, lod, place)
    second_word = fluid.create_lod_tensor(data2, lod, place)
    third_word = fluid.create_lod_tensor(data3, lod, place)
    fourth_word = fluid.create_lod_tensor(data4, lod, place)
155 156 157 158 159 160 161 162 163 164 165

    result = inferencer.infer(
        {
            'firstw': first_word,
            'secondw': second_word,
            'thirdw': third_word,
            'fourthw': fourth_word
        },
        return_numpy=False)

    print(numpy.array(result[0]))
D
daming-lu 已提交
166 167
    most_possible_word_index = numpy.argmax(result[0])
    print(most_possible_word_index)
D
daming-lu 已提交
168 169 170 171
    print([
        key for key, value in word_dict.iteritems()
        if value == most_possible_word_index
    ][0])
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


def main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    params_dirname = "word2vec.inference.model"

    train(
        use_cuda=use_cuda,
        train_program=partial(train_program, is_sparse),
        params_dirname=params_dirname)

    infer(
        use_cuda=use_cuda,
        inference_program=partial(inference_program, is_sparse),
        params_dirname=params_dirname)
189

H
Helin Wang 已提交
190 191

if __name__ == '__main__':
192
    main(use_cuda=use_cuda, is_sparse=True)