train_stacked_lstm.py 8.1 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
S
sidgoyal78 已提交
18 19 20
import paddle
import paddle.fluid as fluid
import numpy as np
Y
Yu Yang 已提交
21
import sys
22
import math
S
sidgoyal78 已提交
23 24 25 26 27 28

CLASS_DIM = 2
EMB_DIM = 128
HID_DIM = 512
STACKED_NUM = 3
BATCH_SIZE = 128
N
Nicky 已提交
29
USE_GPU = False
S
sidgoyal78 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66


def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
    assert stacked_num % 2 == 1

    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)

    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')

    prediction = fluid.layers.fc(
        input=[fc_last, lstm_last], size=class_dim, act='softmax')
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    net = stacked_lstm_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM,
                           STACKED_NUM)
    return net


67 68
def train_program(prediction):
    # prediction = inference_program(word_dict)
S
sidgoyal78 已提交
69 70 71 72 73 74 75 76 77 78 79
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


80
def train(use_cuda, params_dirname):
S
sidgoyal78 已提交
81
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
82

83
    print("Loading IMDB word dict....")
S
sidgoyal78 已提交
84
    word_dict = paddle.dataset.imdb.word_dict()
85 86 87 88 89 90 91 92 93 94 95 96

    print("Reading training data....")
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=BATCH_SIZE)

    print("Reading testing data....")
    test_reader = paddle.batch(
        paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

    feed_order = ['words', 'label']
97
    pass_num = 1
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    main_program = fluid.default_main_program()
    star_program = fluid.default_startup_program()
    prediction = inference_program(word_dict)
    train_func_outputs = train_program(prediction)
    avg_cost = train_func_outputs[0]

    test_program = main_program.clone(for_test=True)

    # [avg_cost, accuracy] = train_program(prediction)
    sgd_optimizer = optimizer_func()
    sgd_optimizer.minimize(avg_cost)
    exe = fluid.Executor(place)

    def train_test(program, reader):
        count = 0
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
        test_exe = fluid.Executor(place)
        accumulated = len(train_func_outputs) * [0]
        for test_data in reader():
            avg_cost_np = test_exe.run(
                program=program,
                feed=feeder_test.feed(test_data),
                fetch_list=train_func_outputs)
            accumulated = [
                x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)
            ]
            count += 1
        return [x / count for x in accumulated]

    def train_loop():

        feed_var_list_loop = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list=feed_var_list_loop, place=place)
        exe.run(fluid.default_startup_program())

        for epoch_id in range(pass_num):
            for step_id, data in enumerate(train_reader()):
                metrics = exe.run(
                    main_program,
                    feed=feeder.feed(data),
                    fetch_list=[var.name for var in train_func_outputs])
                print("step: {0}, Metrics {1}".format(
                    step_id, list(map(np.array, metrics))))
                if (step_id + 1) % 10 == 0:
                    avg_cost_test, acc_test = train_test(test_program,
                                                         test_reader)
                    print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                        step_id, avg_cost_test, acc_test))

                    print("Step {0}, Epoch {1} Metrics {2}".format(
                        step_id, epoch_id, list(map(np.array, metrics))))
                if math.isnan(float(metrics[0])):
                    sys.exit("got NaN loss, training failed.")
            if params_dirname is not None:
                fluid.io.save_inference_model(params_dirname, ["words"],
                                              prediction, exe)

    train_loop()


def infer(use_cuda, params_dirname=None):
S
sidgoyal78 已提交
165 166 167
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inferencer, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)

        # Setup input by creating LoDTensor to represent sequence of words.
        # Here each word is the basic element of the LoDTensor and the shape of
        # each word (base_shape) should be [1] since it is simply an index to
        # look up for the corresponding word vector.
        # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
        # which has only one lod level. Then the created LoDTensor will have only
        # one higher level structure (sequence of words, or sentence) than the basic
        # element (word). Hence the LoDTensor will hold data for three sentences of
        # length 3, 4 and 2, respectively.
        # Note that lod info should be a list of lists.
        reviews_str = [
            'read the book forget the movie', 'this is a great movie',
            'this is very bad'
        ]
        reviews = [c.split() for c in reviews_str]

        UNK = word_dict['<unk>']
        lod = []
        for c in reviews:
            lod.append([word_dict.get(words, UNK) for words in c])

        base_shape = [[len(c) for c in lod]]

        tensor_words = fluid.create_lod_tensor(lod, base_shape, place)
        assert feed_target_names[0] == "words"
        results = exe.run(
            inferencer,
            feed={feed_target_names[0]: tensor_words},
            fetch_list=fetch_targets,
            return_numpy=False)
        np_data = np.array(results[0])
        for i, r in enumerate(np_data):
            print("Predict probability of ", r[0], " to be positive and ", r[1],
                  " to be negative for review \'", reviews_str[i], "\'")
S
sidgoyal78 已提交
213 214 215 216 217 218


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_stacked_lstm.inference.model"
219 220
    train(use_cuda, params_dirname)
    infer(use_cuda, params_dirname)
S
sidgoyal78 已提交
221 222 223


if __name__ == '__main__':
W
Wang,Jeff 已提交
224
    use_cuda = False  # set to True if training with GPU
225
    main(use_cuda)