train_stacked_lstm.py 5.8 KB
Newer Older
S
sidgoyal78 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
S
sidgoyal78 已提交
18 19 20 21 22 23 24 25 26 27
import paddle
import paddle.fluid as fluid
from functools import partial
import numpy as np

CLASS_DIM = 2
EMB_DIM = 128
HID_DIM = 512
STACKED_NUM = 3
BATCH_SIZE = 128
N
Nicky 已提交
28
USE_GPU = False
S
sidgoyal78 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80


def stacked_lstm_net(data, input_dim, class_dim, emb_dim, hid_dim, stacked_num):
    assert stacked_num % 2 == 1

    emb = fluid.layers.embedding(
        input=data, size=[input_dim, emb_dim], is_sparse=True)

    fc1 = fluid.layers.fc(input=emb, size=hid_dim)
    lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)

    inputs = [fc1, lstm1]

    for i in range(2, stacked_num + 1):
        fc = fluid.layers.fc(input=inputs, size=hid_dim)
        lstm, cell = fluid.layers.dynamic_lstm(
            input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
        inputs = [fc, lstm]

    fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
    lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')

    prediction = fluid.layers.fc(
        input=[fc_last, lstm_last], size=class_dim, act='softmax')
    return prediction


def inference_program(word_dict):
    data = fluid.layers.data(
        name="words", shape=[1], dtype="int64", lod_level=1)

    dict_dim = len(word_dict)
    net = stacked_lstm_net(data, dict_dim, CLASS_DIM, EMB_DIM, HID_DIM,
                           STACKED_NUM)
    return net


def train_program(word_dict):
    prediction = inference_program(word_dict)
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=prediction, label=label)
    return [avg_cost, accuracy]


def optimizer_func():
    return fluid.optimizer.Adagrad(learning_rate=0.002)


def train(use_cuda, train_program, params_dirname):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
81
    print("Loading IMDB word dict....")
S
sidgoyal78 已提交
82
    word_dict = paddle.dataset.imdb.word_dict()
83 84 85 86 87 88 89 90 91 92 93

    print("Reading training data....")
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.imdb.train(word_dict), buf_size=25000),
        batch_size=BATCH_SIZE)

    print("Reading testing data....")
    test_reader = paddle.batch(
        paddle.dataset.imdb.test(word_dict), batch_size=BATCH_SIZE)

Y
yuyang 已提交
94
    trainer = Trainer(
S
sidgoyal78 已提交
95 96 97 98
        train_func=partial(train_program, word_dict),
        place=place,
        optimizer_func=optimizer_func)

99 100
    feed_order = ['words', 'label']

S
sidgoyal78 已提交
101
    def event_handler(event):
Y
yuyang 已提交
102
        if isinstance(event, EndStepEvent):
103 104 105
            if event.step % 10 == 0:
                avg_cost, acc = trainer.test(
                    reader=test_reader, feed_order=feed_order)
S
sidgoyal78 已提交
106

107 108 109 110 111 112
                print('Step {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
                    event.step, avg_cost, acc))

                print("Step {0}, Epoch {1} Metrics {2}".format(
                    event.step, event.epoch, map(np.array, event.metrics)))

Y
yuyang 已提交
113
        elif isinstance(event, EndEpochEvent):
114
            trainer.save_params(params_dirname)
S
sidgoyal78 已提交
115 116 117 118 119

    trainer.train(
        num_epochs=1,
        event_handler=event_handler,
        reader=train_reader,
120
        feed_order=feed_order)
S
sidgoyal78 已提交
121 122 123 124 125 126


def infer(use_cuda, inference_program, params_dirname=None):
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    word_dict = paddle.dataset.imdb.word_dict()

Y
yuyang 已提交
127
    inferencer = Inferencer(
S
sidgoyal78 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
        infer_func=partial(inference_program, word_dict),
        param_path=params_dirname,
        place=place)

    # Setup input by creating LoDTensor to represent sequence of words.
    # Here each word is the basic element of the LoDTensor and the shape of 
    # each word (base_shape) should be [1] since it is simply an index to 
    # look up for the corresponding word vector.
    # Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
    # which has only one lod level. Then the created LoDTensor will have only 
    # one higher level structure (sequence of words, or sentence) than the basic 
    # element (word). Hence the LoDTensor will hold data for three sentences of 
    # length 3, 4 and 2, respectively. 
    # Note that lod info should be a list of lists.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    reviews_str = [
        'read the book forget the movie', 'this is a great movie',
        'this is very bad'
    ]
    reviews = [c.split() for c in reviews_str]

    UNK = word_dict['<unk>']
    lod = []
    for c in reviews:
        lod.append([word_dict.get(words, UNK) for words in c])

    base_shape = [[len(c) for c in lod]]

    tensor_words = fluid.create_lod_tensor(lod, base_shape, place)
S
sidgoyal78 已提交
157
    results = inferencer.infer({'words': tensor_words})
158 159 160 161

    for i, r in enumerate(results[0]):
        print("Predict probability of ", r[0], " to be positive and ", r[1],
              " to be negative for review \'", reviews_str[i], "\'")
S
sidgoyal78 已提交
162 163 164 165 166 167 168 169 170 171 172


def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
    params_dirname = "understand_sentiment_stacked_lstm.inference.model"
    train(use_cuda, train_program, params_dirname)
    infer(use_cuda, inference_program, params_dirname)


if __name__ == '__main__':
W
Wang,Jeff 已提交
173
    use_cuda = False  # set to True if training with GPU
174
    main(use_cuda)