train.py 3.6 KB
Newer Older
L
liaogang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import sys
16
import gzip
L
liaogang 已提交
17

L
liaogang 已提交
18
import paddle.v2 as paddle
L
liaogang 已提交
19

L
liaogang 已提交
20 21
from vgg import vgg_bn_drop
from resnet import resnet_cifar10
L
liaogang 已提交
22 23 24 25 26 27 28


def main():
    datadim = 3 * 32 * 32
    classdim = 10

    # PaddlePaddle init
L
liaogang 已提交
29
    paddle.init(use_gpu=False, trainer_count=1)
L
liaogang 已提交
30 31 32 33 34 35

    image = paddle.layer.data(
        name="image", type=paddle.data_type.dense_vector(datadim))

    # Add neural network config
    # option 1. resnet
L
liaogang 已提交
36
    # net = resnet_cifar10(image, depth=32)
L
liaogang 已提交
37
    # option 2. vgg
L
liaogang 已提交
38
    net = vgg_bn_drop(image)
L
liaogang 已提交
39

40 41
    out = paddle.layer.fc(
        input=net, size=classdim, act=paddle.activation.Softmax())
L
liaogang 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    lbl = paddle.layer.data(
        name="label", type=paddle.data_type.integer_value(classdim))
    cost = paddle.layer.classification_cost(input=out, label=lbl)

    # Create parameters
    parameters = paddle.parameters.create(cost)

    # Create optimizer
    momentum_optimizer = paddle.optimizer.Momentum(
        momentum=0.9,
        regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),
        learning_rate=0.1 / 128.0,
        learning_rate_decay_a=0.1,
        learning_rate_decay_b=50000 * 100,
        learning_rate_schedule='discexp',
        batch_size=128)

    # End batch and end pass event handler
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "\nPass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
        if isinstance(event, paddle.event.EndPass):
70 71 72 73
            # save parameters
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

L
liaogang 已提交
74
            result = trainer.test(
L
liaogang 已提交
75
                reader=paddle.batch(
L
liaogang 已提交
76
                    paddle.dataset.cifar.test10(), batch_size=128),
L
liaogang 已提交
77 78
                feeding={'image': 0,
                         'label': 1})
L
liaogang 已提交
79 80 81
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)

    # Create trainer
82 83
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=momentum_optimizer)
L
liaogang 已提交
84
    trainer.train(
L
liaogang 已提交
85
        reader=paddle.batch(
L
liaogang 已提交
86 87 88
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(), buf_size=50000),
            batch_size=128),
89
        num_passes=1,
L
liaogang 已提交
90
        event_handler=event_handler,
L
liaogang 已提交
91 92
        feeding={'image': 0,
                 'label': 1})
L
liaogang 已提交
93

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    # inference
    from PIL import Image
    import numpy as np

    def load_image(file):
        im = Image.open(file)
        im = im.resize((32, 32), Image.ANTIALIAS)
        im = np.array(im).astype(np.float32).flatten()
        im = im / 255.0
        return im

    test_data = []
    test_data.append((load_image('image/dog.png'), ))

    probs = paddle.infer(
        output_layer=out, parameters=parameters, input=test_data)
    lab = np.argsort(-probs)  # probs and lab are the results of one batch data
Q
qingqing01 已提交
111
    print "Label of image/dog.png is: %d" % lab[0][0]
112

L
liaogang 已提交
113 114 115

if __name__ == '__main__':
    main()