train.py 4.0 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
import paddle.v2 as paddle
import cPickle
import copy


def main():
    paddle.init(use_gpu=False)
    movie_title_dict = paddle.dataset.movielens.get_movie_title_dict()
    uid = paddle.layer.data(
        name='user_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_user_id() + 1))
    usr_emb = paddle.layer.embedding(input=uid, size=32)
L
livc 已提交
14
    usr_fc = paddle.layer.fc(input=usr_emb, size=32)
Y
Yu Yang 已提交
15 16 17 18

    usr_gender_id = paddle.layer.data(
        name='gender_id', type=paddle.data_type.integer_value(2))
    usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=16)
L
livc 已提交
19
    usr_gender_fc = paddle.layer.fc(input=usr_gender_emb, size=16)
Y
Yu Yang 已提交
20 21 22 23 24 25

    usr_age_id = paddle.layer.data(
        name='age_id',
        type=paddle.data_type.integer_value(
            len(paddle.dataset.movielens.age_table)))
    usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=16)
L
livc 已提交
26
    usr_age_fc = paddle.layer.fc(input=usr_age_emb, size=16)
Y
Yu Yang 已提交
27 28 29 30 31 32

    usr_job_id = paddle.layer.data(
        name='job_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_job_id() + 1))
    usr_job_emb = paddle.layer.embedding(input=usr_job_id, size=16)
L
livc 已提交
33
    usr_job_fc = paddle.layer.fc(input=usr_job_emb, size=16)
Y
Yu Yang 已提交
34 35

    usr_combined_features = paddle.layer.fc(
L
livc 已提交
36
        input=[usr_fc, usr_gender_fc, usr_age_fc, usr_job_fc],
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44
        size=200,
        act=paddle.activation.Tanh())

    mov_id = paddle.layer.data(
        name='movie_id',
        type=paddle.data_type.integer_value(
            paddle.dataset.movielens.max_movie_id() + 1))
    mov_emb = paddle.layer.embedding(input=mov_id, size=32)
L
livc 已提交
45
    mov_fc = paddle.layer.fc(input=mov_emb, size=32)
Y
Yu Yang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

    mov_categories = paddle.layer.data(
        name='category_id',
        type=paddle.data_type.sparse_binary_vector(
            len(paddle.dataset.movielens.movie_categories())))
    mov_categories_hidden = paddle.layer.fc(input=mov_categories, size=32)

    mov_title_id = paddle.layer.data(
        name='movie_title',
        type=paddle.data_type.integer_value_sequence(len(movie_title_dict)))
    mov_title_emb = paddle.layer.embedding(input=mov_title_id, size=32)
    mov_title_conv = paddle.networks.sequence_conv_pool(
        input=mov_title_emb, hidden_size=32, context_len=3)

    mov_combined_features = paddle.layer.fc(
L
livc 已提交
61
        input=[mov_fc, mov_categories_hidden, mov_title_conv],
Y
Yu Yang 已提交
62 63 64 65 66
        size=200,
        act=paddle.activation.Tanh())

    inference = paddle.layer.cos_sim(
        a=usr_combined_features, b=mov_combined_features, size=1, scale=5)
L
Luo Tao 已提交
67
    cost = paddle.layer.mse_cost(
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        input=inference,
        label=paddle.layer.data(
            name='score', type=paddle.data_type.dense_vector(1)))

    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
    feeding = {
        'user_id': 0,
        'gender_id': 1,
        'age_id': 2,
        'job_id': 3,
        'movie_id': 4,
        'category_id': 5,
        'movie_title': 6,
        'score': 7
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.2f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.movielens.train(), buf_size=8192),
            batch_size=256),
        event_handler=event_handler,
        feeding=feeding,
        num_passes=1)

    user_id = 234
    movie_id = 345

    user = paddle.dataset.movielens.user_info()[user_id]
    movie = paddle.dataset.movielens.movie_info()[movie_id]

    feature = user.value() + movie.value()

    infer_dict = copy.copy(feeding)
    del infer_dict['score']

    prediction = paddle.infer(
        output_layer=inference,
        parameters=parameters,
        input=[feature],
        feeding=infer_dict)
    print(prediction + 5) / 2


if __name__ == '__main__':
    main()