index.html 30.4 KB
Newer Older
1

Y
Yu Yang 已提交
2 3 4 5
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
Y
Yu Yang 已提交
6
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
Y
Yu Yang 已提交
7 8
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Y
Yu Yang 已提交
11 12 13 14
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
Y
Yi Wang 已提交
15 16
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Y
Yu Yang 已提交
18 19
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
Y
Yi Wang 已提交
20
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
Y
Yu Yang 已提交
21
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
Y
Yu Yang 已提交
22
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Y
Yu Yang 已提交
24 25
</head>
<style type="text/css" >
Y
Yu Yang 已提交
26 27 28 29 30 31
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
Y
Yu Yang 已提交
32 33 34 35
}
</style>


Y
Yu Yang 已提交
36
<body>
Y
Yu Yang 已提交
37

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Y
Yu Yang 已提交
39 40 41 42
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
H
Hao Wang 已提交
43
# Word Vector
44

H
Hao Wang 已提交
45
The source code of this tutorial is in [book/word2vec](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec). For new users, please refer to [Running This Book](https://github.com/PaddlePaddle/book/blob/develop/README.md#running-the-book) .
Y
Yu Yang 已提交
46

H
Hao Wang 已提交
47
## Background
Y
Yu Yang 已提交
48

H
Hao Wang 已提交
49
In this chapter, we'll introduce the vector representation of words, also known as word embedding. Word vector is a common operation in natural language processing. It is a common technology underlying Internet services such as search engines, advertising systems, and recommendation systems.
Y
Yu Yang 已提交
50

H
Hao Wang 已提交
51
In these Internet services, we often compare the correlation between two words or two paragraphs of text. In order to make such comparisons, we often have to express words in a way that is suitable for computer processing. The most natural way is probably the vector space model.In this way, each word is represented as a one-hot vector whose length is the dictionary size, and each dimension corresponds to each word in a dictionary, except that the value in the corresponding dimension of the word is 1, other elements are 0.
Y
Yu Yang 已提交
52

H
Hao Wang 已提交
53
The One-hot vector is natural but has limitation. For example, in the internet advertising system, if the query entered by the user is "Mother's Day", the keyword of an advertisement is "Carnation". Although according to common sense, we know that there is a connection between these two words - Mother's Day should usually give the mother a bunch of carnations; but the distance between the two words corresponds to the one-hot vectors, whether it is Euclidean distance or cosine similarity, the two words are considered to be irrelevant due to their vector orthogonality. The root cause of this conclusion contradicting us is that the amount of information in each word itself is too small. Therefore, just giving two words is not enough for us to accurately determine whether they are relevant. To accurately calculate correlations, we need more information—knowledge from a large amount of data through machine learning methods.
Y
Yu Yang 已提交
54

H
Hao Wang 已提交
55
In the field of machine learning, all kinds of "knowledge" are represented by various models, and the word embedding model is one of them. A one-hot vector can be mapped to a lower-dimensional embedding vector by the word embedding model, such as $embedding (Mother's day) = [0.3, 4.2, -1.5, ...], embedding (carnation) = [0.2, 5.6, -2.3, ...]$. In this representation of the embedding vector to which it is mapped, it is desirable that the word vectors corresponding to the similar words on the two semantics (or usages) are "more like", such that the cosine similarity of the corresponding word vectors of "Mother's Day" and "Carnation" is no longer zero.
Y
Yu Yang 已提交
56

H
Hao Wang 已提交
57
The word embedding model can be a probability model, a co-occurrence matrix model, or a neural network model. Before implementing neural networks to calculate the embedding vector, the traditional method is to count the co-occurrence matrix $X$ of a word. $X$ is a matrix of $|V| \times |V|$ size, $X_{ij}$ means that in all corpora, The number of words appearing simultaneously with the i-th word and the j-th word in the vocabulary $V$(vocabulary), $|V|$ is the size of the vocabulary. Do matrix decomposition for $X$ (such as singular value decomposition, Singular Value Decomposition \[[5](#references)\]), and the result $U$ is treated as the embedding vector for all words:
Y
Yu Yang 已提交
58

H
Hao Wang 已提交
59
$$X = USV^T$$
Y
Yu Yang 已提交
60

H
Hao Wang 已提交
61
But such traditional method has many problems:
C
choijulie 已提交
62

H
Hao Wang 已提交
63
1) Since many words do not appear, the matrix is extremely sparse, so additional processing of the word frequency is needed to achieve a good matrix decomposition effect;
Y
Yu Yang 已提交
64

H
Hao Wang 已提交
65
2) The matrix is very large and the dimensions are too high (usually up to $10^6 \times 10^6$);
Y
Yu Yang 已提交
66

H
Hao Wang 已提交
67
3) You need to manually remove the stop words (such as although, a, ...), otherwise these frequently occurring words will also affect the effect of matrix decomposition.
Y
Yu Yang 已提交
68

H
Hao Wang 已提交
69
The neural-network-based model does not need to calculate and store a large table that is statistically generated on the whole corpus, but obtains the word vector by learning the semantic information, so the problem above can be well solved. In this chapter, we will show the details of training word vectors based on neural networks and how to train a word embedding model with PaddlePaddle.
Y
Yu Yang 已提交
70 71


H
Hao Wang 已提交
72
##  Result Demo
Y
Yu Yang 已提交
73

H
Hao Wang 已提交
74
In this chapter, after the embedding vector is trained, we can use the data visualization algorithm t-SNE\[[4](#references)\] to draw the projection of the word features in two dimensions (as shown below). As can be seen from the figure, semantically related words (such as a, the, these; big, huge) are very close in projection, and semantic unrelated words (such as say, business; decision, japan) are far away from the projection.
Y
Yu Yang 已提交
75 76

<p align="center">
H
Hao Wang 已提交
77 78
    <img src = "https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/image/2d_similarity.png?raw=true" width=400><br/>
    Figure 1. Two-dimensional projection of a word vector
Y
Yu Yang 已提交
79 80
</p>

H
Hao Wang 已提交
81
On the other hand, we know that the cosine of two vectors is in the interval of $[-1,1]$: two identical vector cosines are 1, and the cosine value between two mutually perpendicular vectors is 0, The vector cosine of the opposite direction is -1, which the correlation is proportional to the magnitude of the cosine. So we can also calculate the cosine similarity of two word vectors:
Y
Yu Yang 已提交
82

Y
Yu Yang 已提交
83
```
H
Hao Wang 已提交
84

Y
Yu Yang 已提交
85
please input two words: big huge
H
Hao Wang 已提交
86
Similarity: 0.899180685161
Y
Yu Yang 已提交
87 88

please input two words: from company
H
Hao Wang 已提交
89
Similarity: -0.0997506977351
C
choijulie 已提交
90

H
Hao Wang 已提交
91
```
Y
Yu Yang 已提交
92

H
Hao Wang 已提交
93
The results above can be obtained by running `calculate_dis.py`, loading the words in the dictionary and the corresponding training feature results. We will describe the usage for details in [model application](#model application).
Y
Yu Yang 已提交
94 95


H
Hao Wang 已提交
96
## Overview of Models
Y
Yu Yang 已提交
97

H
Hao Wang 已提交
98
Here we introduce three models of training word vectors: N-gram model, CBOW model and Skip-gram model. Their central idea is to get the probability of a word appearing through the context. For the N-gram model, we will first introduce the concept of the language model. In the section [training model](#training model), we'll tutor you to implement it with PaddlePaddle. The latter two models are the most famous neuron word vector models in recent years, developed by Tomas Mikolov in Google \[[3](#references)\], although they are very simple, but the training effect is very good.
Y
Yu Yang 已提交
99

C
choijulie 已提交
100
### Language Model
Y
Yu Yang 已提交
101

H
Hao Wang 已提交
102 103
Before introducing the word embedding model, let us introduce a concept: the language model.
The language model is intended to model the joint probability function $P(w_1, ..., w_T)$ of a sentence, where $w_i$ represents the ith word in the sentence. The goal of the language model isn that the model gives a high probability to meaningful sentences and a small probability to meaningless sentences.Such models can be applied to many fields, such as machine translation, speech recognition, information retrieval, part-of-speech tagging, handwriting recognition, etc., All of which hope to obtain the probability of a continuous sequence. Take information retrieval as an example, when you search for "how long is a football bame" (bame is a medical term), the search engine will prompt you if you want to search for "how long is a football game", because the probability of calculating "how long is a football bame" is very low, and the word is similar to bame, which may cause errors, the game will maximize the probability of generating the sentence.
C
choijulie 已提交
104

H
Hao Wang 已提交
105
For the target probability of the language model $P(w_1, ..., w_T)$, if it is assumed that each word in the text is independent, the joint probability of the whole sentence can be expressed as the product of the conditional probabilities of all the words. which is:
Y
Yu Yang 已提交
106 107 108

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t)$$

H
Hao Wang 已提交
109
However, we know that the probability of each word in the statement is closely related to the word in front of it, so in fact, the language model is usually represented by conditional probability:
Y
Yu Yang 已提交
110 111 112 113

$$P(w_1, ..., w_T) = \prod_{t=1}^TP(w_t | w_1, ... , w_{t-1})$$


H
Hao Wang 已提交
114

115
### N-gram neural model
Y
Yu Yang 已提交
116

H
Hao Wang 已提交
117
In computational linguistics, n-gram is an important text representation method that represents a continuous n items in a text. Each item can be a letter, word or syllable based on the specific application scenario. The n-gram model is also an important method in the statistical language model. When n-gram is used to train the language model, the nth word is generally predicted by the content of the n-1 words of each n-gram.
Y
Yu Yang 已提交
118

H
Hao Wang 已提交
119 120
Scientists such as Yoshua Bengio introduced how to learn a word vector model of a neural network representation in the famous paper Neural Probabilistic Language Models \[[1](#references)\ in 2003. The Neural Network Language Model (NNLM) in this paper connects the linear model and a nonlinear hidden layer. It learns the language model and the word vector simultaneously, that is, by learning a large number of corpora to obtain the vector expression of the words, and the probability of the entire sentence is obtained by using these vectors. Since all words are represented by a low-dimensional vector, learning the language model in this way can overcome the curse of dimensionality.
Note: Because the "Neural Network Language Model" is more general, we do not use the real name of NNLM here, considering its specific practice, this model here is called N-gram neural model.
Y
Yu Yang 已提交
121

H
Hao Wang 已提交
122
We have already mentioned above using the conditional probability language model, that is, the probability of the $t$ word in a sentence is related to the first $t-1$ words of the sentence. The farther the word actually has the smaller effect on the word, then if you consider an n-gram, each word is only affected by the preceding `n-1` words, then:
Y
Yu Yang 已提交
123

H
Hao Wang 已提交
124
$$P(w_1, ..., w_T) = \prod_{t=n}^TP(w_t|w_{t-1}, w_{t-2}, ..., w_{t-n+1 })$$
Y
Yu Yang 已提交
125

H
Hao Wang 已提交
126
Given some real corpora, these corpora are meaningful sentences, and the optimization goal of the N-gram model is to maximize the objective function:
Y
Yu Yang 已提交
127 128 129

$$\frac{1}{T}\sum_t f(w_t, w_{t-1}, ..., w_{t-n+1};\theta) + R(\theta)$$

H
Hao Wang 已提交
130
Where $f(w_t, w_{t-1}, ..., w_{t-n+1})$ represents the conditional probability of getting the current word $w_t$ based on historical n-1 words, $R(\theta )$ represents a parameter regularization item.
Y
Yu Yang 已提交
131

132
<p align="center">
H
Hao Wang 已提交
133 134
       <img src="https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/image/nnlm.png?raw=true" width=500><br/>
       Figure 2. N-gram neural network model
Y
Yu Yang 已提交
135 136
</p>

H
Hao Wang 已提交
137 138
Figure 2 shows the N-gram neural network model. From the bottom up, the model is divided into the following parts:
 - For each sample, the model enters $w_{t-n+1},...w_{t-1}$, and outputs the probability distribution of the t-th word in the dictionary on the `|V|` words.
139

H
Hao Wang 已提交
140
   Each input word $w_{t-n+1},...w_{t-1}$ first maps to the word vector $C(w_{t-n+1}),...W_{t-1})$ by the mapping matrix.
141

H
Hao Wang 已提交
142
 - Then the word vectors of all words are spliced into a large vector, and a hidden layer representation of the historical words is obtained through a non-linear mapping:
143

144
    $$g=Utanh(\theta^Tx + b_1) + Wx + b_2$$
145

H
Hao Wang 已提交
146
Among them, $x$ is a large vector of all words, representing text history features; $\theta$, $U$, $b_1$, $b_2$, and $W$ are respectively parameters for the word vector layer to the hidden layer connection. $g$ represents the probability of all output words that are not normalized, and $g_i$ represents the output probability of the $i$ word in the unnormalized dictionary.
Y
Yu Yang 已提交
147

H
Hao Wang 已提交
148
 - According to the definition of softmax, by normalizing $g_i$, the probability of generating the target word $w_t$ is:
149

Y
Yu Yang 已提交
150 151
  $$P(w_t | w_1, ..., w_{t-n+1}) = \frac{e^{g_{w_t}}}{\sum_i^{|V|} e^{g_i}}$$

H
Hao Wang 已提交
152 153 154 155 156
 - The loss value of the entire network is the multi-class classification cross entropy, which is expressed as

   $$J(\theta) = -\sum_{i=1}^N\sum_{k=1}^{|V|}y_k^{i}log(softmax(g_k^i))$$

   where $y_k^i$ represents the real label (0 or 1) of the $i$ sample of the $k$ class, and $softmax(g_k^i)$ represents the probability of the kth softmax output of the i-th sample.
Y
Yu Yang 已提交
157 158


159 160

### Continuous Bag-of-Words model(CBOW)
Y
Yu Yang 已提交
161

H
Hao Wang 已提交
162
The CBOW model predicts the current word through the context of a word (each N words). When N=2, the model is shown below:
Y
Yu Yang 已提交
163

164
<p align="center">
H
Hao Wang 已提交
165 166
    <img src="https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/image/cbow.png?raw=true" width=250><br/>
    Figure 3. CBOW model
Y
Yu Yang 已提交
167 168
</p>

H
Hao Wang 已提交
169
Specifically, regardless of the contextual word input order, CBOW uses the mean of the word vectors of the context words to predict the current word. which is:
Y
Yu Yang 已提交
170

H
Hao Wang 已提交
171
$$context = \frac{x_{t-1} + x_{t-2} + x_{t+1} + x_{t+2}}{4}$$
Y
Yu Yang 已提交
172

H
Hao Wang 已提交
173
Where $x_t$ is the word vector of the $t$th word, the score vector (score) $z=U\*context$, the final classification $y$ uses softmax, and the loss function uses multi-class classification cross entropy.
Y
Yu Yang 已提交
174

175
### Skip-gram model
Y
Yu Yang 已提交
176

H
Hao Wang 已提交
177
The benefit of CBOW is that the distribution of contextual words is smoothed over the word vector, removing noise.  Therefore it is very effective on small data sets. In the Skip-gram method, a word is used to predict its context, and many samples of the current word context are obtained, so it can be used for a larger data set.
Y
Yu Yang 已提交
178

179
<p align="center">
H
Hao Wang 已提交
180 181
    <img src="https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/image/skipgram.png?raw=true" width=250><br/>
    Figure 4. Skip-gram model
Y
Yu Yang 已提交
182 183
</p>

H
Hao Wang 已提交
184
As shown in the figure above, the specific method of the Skip-gram model is to map the word vector of a word to the word vector of $2n$ words ($2n$ represents the $n$ words before and after the input word), and then obtained the sum of the classification loss values of the $2n$ words by softmax.
Y
Yu Yang 已提交
185 186


H
Hao Wang 已提交
187 188 189 190 191
## Data Preparation

### Data Introduction

This tutorial uses the Penn Treebank (PTB) (pre-processed version of Tomas Mikolov) dataset. The PTB data set is small and the training speed is fast. It is applied to Mikolov's open language model training tool \[[2](#references)\]. Its statistics are as follows:
Y
Yu Yang 已提交
192 193 194

<p align="center">
<table>
H
Hao Wang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    <tr>
        <td>Training data</td>
        <td>Verify data</td>
        <td>Test data</td>
    </tr>
    <tr>
        <td>ptb.train.txt</td>
        <td>ptb.valid.txt</td>
        <td>ptb.test.txt</td>
    </tr>
    <tr>
        <td>42068 sentences</td>
        <td>3370 sentences</td>
        <td>3761 sentence</td>
    </tr>
Y
Yu Yang 已提交
210 211 212
</table>
</p>

213

H
Hao Wang 已提交
214
### Data Preprocessing
Y
Yu Yang 已提交
215

H
Hao Wang 已提交
216
This chapter trains the 5-gram model, which means that the first 4 words of each piece of data are used to predict the 5th word during PaddlePaddle training. PaddlePaddle provides the python package `paddle.dataset.imikolov` corresponding to the PTB dataset, which automatically downloads and preprocesses the data for your convenience.
Y
Yu Yang 已提交
217

H
Hao Wang 已提交
218
Preprocessing adds the start symbol `<s>` and the end symbol `<e>` to each sentence in the data set. Then, depending on the window size (5 in this tutorial), slide the window to the right each time from start to end and generate a piece of data.
Y
Yu Yang 已提交
219

H
Hao Wang 已提交
220
For example, "I have a dream that one day" provides 5 pieces of data:
Y
Yu Yang 已提交
221

L
Luo Tao 已提交
222 223 224
```text
<s> I have a dream
I have a dream that
H
Hao Wang 已提交
225
Have a dream that one
L
Luo Tao 已提交
226
a dream that one day
H
Hao Wang 已提交
227
Dream that one day <e>
Y
Yu Yang 已提交
228 229
```

H
Hao Wang 已提交
230
Finally, based on the position of its word in the dictionary, each input is converted to an index sequence of integers as the input to PaddlePaddle.
Y
Yu Yang 已提交
231

H
Hao Wang 已提交
232 233
<a name="training model"></a>
## Program the Model
C
choijulie 已提交
234

H
Hao Wang 已提交
235
The model structure of this configuration is shown below:
Y
Yu Yang 已提交
236

237
<p align="center">
H
Hao Wang 已提交
238 239
    <img src="https://github.com/PaddlePaddle/book/blob/develop/04.word2vec/image/ngram.png?raw=true" width=400><br/>
    Figure 5. N-gram neural network model in model configuration
Y
Yu Yang 已提交
240 241
</p>

H
Hao Wang 已提交
242
First, load packages:
243 244

```python
H
Hao Wang 已提交
245

X
xiaoting 已提交
246 247
from __future__ import print_function

H
Hao Wang 已提交
248
import paddle as paddle
249
import paddle.fluid as fluid
H
Hao Wang 已提交
250
import six
251
import numpy
D
daming-lu 已提交
252
import math
H
Hao Wang 已提交
253

254 255
```

H
Hao Wang 已提交
256
Then, define the parameters:
Y
Update  
Yi Wang 已提交
257

258
```python
H
Hao Wang 已提交
259 260 261 262 263
EMBED_SIZE = 32 # embedding dimensions
HIDDEN_SIZE = 256 # hidden layer size
N = 5 # ngram size, here fixed 5
BATCH_SIZE = 100 # batch size
PASS_NUM = 100 # Training rounds
Y
Yu Yang 已提交
264

H
Hao Wang 已提交
265
use_cuda = False # Set to True if trained with GPU
L
Luo Tao 已提交
266

267 268
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
L
Luo Tao 已提交
269 270
```

H
Hao Wang 已提交
271
A larger `BATCH_SIZE` will make the training converge faster, but it will also consume more memory. Since the word vector calculation is large, if the environment allows, please turn on the GPU for training, and get results faster.
Y
Yibing Liu 已提交
272
Unlike the previous PaddlePaddle v2 version, in the new Fluid version, we don't have to manually calculate the word vector. PaddlePaddle provides a built-in method `fluid.embedding`, which we can use directly to construct an N-gram neural network.
L
Luo Tao 已提交
273

H
Hao Wang 已提交
274
- Let's define our N-gram neural network structure. This structure is used in both training and predicting. Because the word vector is sparse, we pass the parameter `is_sparse == True` to speed up the update of the sparse matrix.
275

L
Luo Tao 已提交
276
```python
H
Hao Wang 已提交
277
def inference_program(words, is_sparse):
278

Y
Yibing Liu 已提交
279
    embed_first = fluid.embedding(
H
Hao Wang 已提交
280
        input=words[0],
281 282 283 284
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
Y
Yibing Liu 已提交
285
    embed_second = fluid.embedding(
H
Hao Wang 已提交
286
        input=words[1],
287 288 289 290
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
Y
Yibing Liu 已提交
291
    embed_third = fluid.embedding(
H
Hao Wang 已提交
292
        input=words[2],
293 294 295 296
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')
Y
Yibing Liu 已提交
297
    embed_fourth = fluid.embedding(
H
Hao Wang 已提交
298
        input=words[3],
299 300 301 302 303 304 305 306 307 308 309 310
        size=[dict_size, EMBED_SIZE],
        dtype='float32',
        is_sparse=is_sparse,
        param_attr='shared_w')

    concat_embed = fluid.layers.concat(
        input=[embed_first, embed_second, embed_third, embed_fourth], axis=1)
    hidden1 = fluid.layers.fc(input=concat_embed,
                              size=HIDDEN_SIZE,
                              act='sigmoid')
    predict_word = fluid.layers.fc(input=hidden1, size=dict_size, act='softmax')
    return predict_word
L
Luo Tao 已提交
311 312
```

H
Hao Wang 已提交
313
- Based on the neural network structure above, we can define our training method as follows:
L
Luo Tao 已提交
314 315

```python
H
Hao Wang 已提交
316 317 318 319
def train_program(predict_word):
    # The definition of'next_word' must be after the declaration of inference_program.
    # Otherwise the sequence of the train program input data becomes [next_word, firstw, secondw,
    #thirdw, fourthw], This is not true.
Y
Yibing Liu 已提交
320
    next_word = fluid.data(name='nextw', shape=[None, 1], dtype='int64')
321 322 323
    cost = fluid.layers.cross_entropy(input=predict_word, label=next_word)
    avg_cost = fluid.layers.mean(cost)
    return avg_cost
L
Luo Tao 已提交
324

D
daming-lu 已提交
325 326 327 328 329
def optimizer_func():
    return fluid.optimizer.AdagradOptimizer(
        learning_rate=3e-3,
        regularization=fluid.regularizer.L2DecayRegularizer(8e-4))

H
Hao Wang 已提交
330 331 332 333 334 335 336 337 338
```

- Now we can start training. This version is much simpler than before. We have ready-made training and test sets: `paddle.dataset.imikolov.train()` and `paddle.dataset.imikolov.test()`. Both will return a reader. In PaddlePaddle, the reader is a Python function that reads the next piece of data when called each time . It is a Python generator.

`paddle.batch` will read in a reader and output a batched reader. We can also output the training of each step and batch during the training process.

```python
def train(if_use_cuda, params_dirname, is_sparse=True):
    place = fluid.CUDAPlace(0) if if_use_cuda else fluid.CPUPlace()
D
daming-lu 已提交
339

340 341 342 343 344
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
    test_reader = paddle.batch(
        paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE)

Y
Yibing Liu 已提交
345 346 347 348 349
    first_word = fluid.data(name='firstw', shape=[None, 1], dtype='int64')
    second_word = fluid.data(name='secondw', shape=[None, 1], dtype='int64')
    third_word = fluid.data(name='thirdw', shape=[None, 1], dtype='int64')
    forth_word = fluid.data(name='fourthw', shape=[None, 1], dtype='int64')
    next_word = fluid.data(name='nextw', shape=[None, 1], dtype='int64')
350

H
Hao Wang 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    word_list = [first_word, second_word, third_word, forth_word, next_word]
    feed_order = ['firstw', 'secondw', 'thirdw', 'fourthw', 'nextw']

    main_program = fluid.default_main_program()
    star_program = fluid.default_startup_program()

    predict_word = inference_program(word_list, is_sparse)
    avg_cost = train_program(predict_word)
    test_program = main_program.clone(for_test=True)

    sgd_optimizer = optimizer_func()
    sgd_optimizer.minimize(avg_cost)

    exe = fluid.Executor(place)

    def train_test(program, reader):
        count = 0
        feed_var_list = [
            program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder_test = fluid.DataFeeder(feed_list=feed_var_list, place=place)
        test_exe = fluid.Executor(place)
        accumulated = len([avg_cost]) * [0]
        for test_data in reader():
            avg_cost_np = test_exe.run(
                program=program,
                feed=feeder_test.feed(test_data),
                fetch_list=[avg_cost])
            accumulated = [
                x[0] + x[1][0] for x in zip(accumulated, avg_cost_np)
            ]
        count += 1
        return [x / count for x in accumulated]

    def train_loop():
        step = 0
        feed_var_list_loop = [
            main_program.global_block().var(var_name) for var_name in feed_order
        ]
        feeder = fluid.DataFeeder(feed_list=feed_var_list_loop, place=place)
        exe.run(star_program)
        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_cost_np = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost])

                if step % 10 == 0:
                    outs = train_test(test_program, test_reader)

                    print("Step %d: Average Cost %f" % (step, outs[0]))

                    # The entire training process takes several hours if the average loss is less than 5.8,
                    # We think that the model has achieved good results and can stop training.
                    # Note 5.8 is a relatively high value, in order to get a better model, you can
                    # set the threshold here to be 3.5, but the training time will be longer.
                    if outs[0] < 5.8:
                        if params_dirname is not None:
                            fluid.io.save_inference_model(params_dirname, [
                                 'firstw', 'secondw', 'thirdw', 'fourthw'
                            ], [predict_word], exe)
                        return
                step += 1
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    train_loop()
Y
Yu Yang 已提交
419 420
```

H
Hao Wang 已提交
421 422
- `train_loop` will start training. The log of the training process during the period is as follows:

423
```text
424 425 426
Step 0: Average Cost 7.337213
Step 10: Average Cost 6.136128
Step 20: Average Cost 5.766995
427 428
...
```
429

H
Hao Wang 已提交
430
<a name="model application"></a>
C
choijulie 已提交
431
## Model Application
H
Hao Wang 已提交
432
After the model is trained, we can use it to make some predictions.
Y
Update  
Yi Wang 已提交
433

H
Hao Wang 已提交
434 435
### Predict the next word
We can use our trained model to predict the next word after learning the previous N-gram.
Y
Yu Yang 已提交
436

437
```python
H
Hao Wang 已提交
438
def infer(use_cuda, params_dirname=None):
439
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
H
Hao Wang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453

    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        #Get the inference program using fluid.io.load_inference_model,
        #feed variable name by feed_target_names and fetch fetch_targets from scope
        [inferencer, feed_target_names,
        fetch_targets] = fluid.io.load_inference_model(params_dirname, exe)

        # Set the input and use 4 LoDTensor to represent 4 words. Each word here is an id,
        # Used to query the embedding table to get the corresponding word vector, so its shape size is [1].
        # recursive_sequence_lengths sets the length based on LoD, so it should all be set to [[1]]
        # Note that recursive_sequence_lengths is a list of lists
454 455 456 457 458
        data1 = numpy.asarray([[211]], dtype=numpy.int64)  # 'among'
        data2 = numpy.asarray([[6]], dtype=numpy.int64)  # 'a'
        data3 = numpy.asarray([[96]], dtype=numpy.int64)  # 'group'
        data4 = numpy.asarray([[4]], dtype=numpy.int64)  # 'of'
        lod = numpy.asarray([[1]], dtype=numpy.int64)
H
Hao Wang 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

        first_word = fluid.create_lod_tensor(data1, lod, place)
        second_word = fluid.create_lod_tensor(data2, lod, place)
        third_word = fluid.create_lod_tensor(data3, lod, place)
        fourth_word = fluid.create_lod_tensor(data4, lod, place)

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'fourthw'

        # Construct the feed dictionary {feed_target_name: feed_target_data}
        # Prediction results are included in results
        results = exe.run(
            inferencer,
            feed={
                feed_target_names[0]: first_word,
                feed_target_names[1]: second_word,
                feed_target_names[2]: third_word,
                feed_target_names[3]: fourth_word
            },
            fetch_list=fetch_targets,
            return_numpy=False)

        print(numpy.array(results[0]))
        most_possible_word_index = numpy.argmax(results[0])
        print(most_possible_word_index)
        print([
            key for key, value in six.iteritems(word_dict)
            if value == most_possible_word_index
        ][0])
Y
Yu Yang 已提交
490 491
```

H
Hao Wang 已提交
492
Since the word vector matrix itself is relatively sparse, the training process takes a long time to reach a certain precision. In order to see the effect simply, the tutorial only sets up with a few rounds of training and ends with the following result. Our model predicts that the next word for `among a group of` is `the`. This is in line with the law of grammar. If we train for longer time, such as several hours, then the next predicted word we will get is `workers`. The format of the predicted output is as follows:
493

494
```text
H
Hao Wang 已提交
495 496 497
[[0.03768077 0.03463154 0.00018074 ... 0.00022283 0.00029888 0.02967956]]
0
the
498
```
H
Hao Wang 已提交
499
The first line represents the probability distribution of the predicted word in the dictionary, the second line represents the id corresponding to the word with the highest probability, and the third line represents the word with the highest probability.
500

H
Hao Wang 已提交
501
The entrance to the entire program is simple:
Y
Yu Yang 已提交
502

503
```python
504 505 506
def main(use_cuda, is_sparse):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
Y
Yu Yang 已提交
507

508
    params_dirname = "word2vec.inference.model"
Y
Yu Yang 已提交
509

510
    train(
H
Hao Wang 已提交
511 512 513
        if_use_cuda=use_cuda,
        params_dirname=params_dirname,
        is_sparse=is_sparse)
Y
Yu Yang 已提交
514

H
Hao Wang 已提交
515
    infer(use_cuda=use_cuda, params_dirname=params_dirname)
Y
Yu Yang 已提交
516

517

518
main(use_cuda=use_cuda, is_sparse=True)
519
```
Y
Update  
Yi Wang 已提交
520

C
choijulie 已提交
521
## Conclusion
H
Hao Wang 已提交
522
In this chapter, we introduced word vectors, the relationship between language models and word vectors and how to obtain word vectors by training neural network models. In information retrieval, we can judge the correlation between query and document keywords based on the cosine value between vectors. In syntactic analysis and semantic analysis, trained word vectors can be used to initialize the model for better results. In the document classification, after the word vector, you can cluster to group synonyms in a document, or you can use N-gram to predict the next word. We hope that everyone can easily use the word vector to conduct research in related fields after reading this chapter.
C
choijulie 已提交
523

H
Hao Wang 已提交
524
<a name="references"></a>
M
Mimee 已提交
525
## References
H
Hao Wang 已提交
526 527 528 529
1. Bengio Y, Ducharme R, Vincent P, et al. [A neural probabilistic language model](http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf)[J]. journal of machine learning Research, 2003, 3(Feb): 1137-1155.
2. Mikolov T, Kombrink S, Deoras A, et al. [Rnnlm-recurrent neural network language modeling toolkit](http://www.fit.vutbr.cz/~imikolov/rnnlm/rnnlm-demo.pdf)[C ]//Proc. of the 2011 ASRU Workshop. 2011: 196-201.
3. Mikolov T, Chen K, Corrado G, et al. [Efficient estimation of word representations in vector space](https://arxiv.org/pdf/1301.3781.pdf)[J]. arXiv preprint arXiv:1301.3781, 2013 .
4. Maaten L, Hinton G. [Visualizing data using t-SNE](https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf)[J]. Journal of Machine Learning Research, 2008, 9(Nov ): 2579-2605.
Y
Yu Yang 已提交
530 531 532
5. https://en.wikipedia.org/wiki/Singular_value_decomposition

<br/>
X
xiaoting 已提交
533
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://paddlepaddleimage.cdn.bcebos.com/bookimage/camo.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">This tutorial</span> is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
534

Y
Yu Yang 已提交
535 536 537 538 539 540 541
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
Y
Yu Yang 已提交
542 543 544
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
Y
Yu Yang 已提交
545
    code = code.replace(/&amp;/g, "&")
Y
Yu Yang 已提交
546 547
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
548
    code = code.replace(/&nbsp;/g, " ")
Y
Yu Yang 已提交
549
    return hljs.highlightAuto(code, [lang]).value;
Y
Yu Yang 已提交
550 551 552
  }
});
document.getElementById("context").innerHTML = marked(
553
        document.getElementById("markdown").innerHTML)
Y
Yu Yang 已提交
554 555
</script>
</body>