index.en.html 23.3 KB
Newer Older
1

Z
Zhuoyuan 已提交
2 3 4 5 6 7 8
<html>
<head>
  <script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js", "TeX/AMSsymbols.js", "TeX/AMSmath.js"],
    jax: ["input/TeX", "output/HTML-CSS"],
    tex2jax: {
9 10
      inlineMath: [ ['$','$'] ],
      displayMath: [ ['$$','$$'] ],
Z
Zhuoyuan 已提交
11 12 13 14 15 16
      processEscapes: true
    },
    "HTML-CSS": { availableFonts: ["TeX"] }
  });
  </script>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js" async></script>
Y
Yu Yang 已提交
17
  <script type="text/javascript" src="../.tools/theme/marked.js">
Z
Zhuoyuan 已提交
18 19 20 21 22
  </script>
  <link href="http://cdn.bootcss.com/highlight.js/9.9.0/styles/darcula.min.css" rel="stylesheet">
  <script src="http://cdn.bootcss.com/highlight.js/9.9.0/highlight.min.js"></script>
  <link href="http://cdn.bootcss.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css" rel="stylesheet">
  <link href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" rel="stylesheet">
Y
Yu Yang 已提交
23
  <link href="../.tools/theme/github-markdown.css" rel='stylesheet'>
Z
Zhuoyuan 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37
</head>
<style type="text/css" >
.markdown-body {
    box-sizing: border-box;
    min-width: 200px;
    max-width: 980px;
    margin: 0 auto;
    padding: 45px;
}
</style>


<body>

Y
Yu Yang 已提交
38
<div id="context" class="container-fluid markdown-body">
Z
Zhuoyuan 已提交
39 40 41 42 43 44
</div>

<!-- This block will be replaced by each markdown file content. Please do not change lines below.-->
<div id="markdown" style='display:none'>
# Sentiment Analysis

C
caoying03 已提交
45
The source codes of this section can be located at [book/understand_sentiment](https://github.com/PaddlePaddle/book/tree/develop/06.understand_sentiment). First-time users may refer to PaddlePaddle for [Installation guide](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst).
Z
Zhuoyuan 已提交
46

L
liaogang 已提交
47
## Background
Z
Zhuoyuan 已提交
48

49
In natural language processing, sentiment analysis refers to determining the emotion expressed in a piece of text. The text can be a sentence, a paragraph, or a document. Emotion categorization can be binary -- positive/negative or happy/sad -- or in three classes -- positive/neutral/negative. Sentiment analysis is applicable in a wide range of services, such as e-commerce sites like Amazon and Taobao, hospitality services like Airbnb and hotels.com, and movie rating sites like Rotten Tomatoes and IMDB. It can be used to gauge from the reviews how the customers feel about the product. Table 1 illustrates an example of sentiment analysis in movie reviews:
Z
Zhuoyuan 已提交
50 51 52 53 54 55 56 57 58 59

| Movie Review       | Category  |
| --------     | -----  |
| Best movie of Xiaogang Feng in recent years!| Positive |
| Pretty bad. Feels like a tv-series from a local TV-channel     | Negative |
| Politically correct version of Taken ... and boring as Heck| Negative|
|delightful, mesmerizing, and completely unexpected. The plot is nicely designed.|Positive|

<p align="center">Table 1 Sentiment Analysis in Movie Reviews</p>

60
In natural language processing, sentiment analysis can be categorized as a **Text Classification problem**, i.e., to categorize a piece of text to a specific class. It involves two related tasks: text representation and classification. Before the emergence of deep learning techniques, the mainstream methods for text representation include BOW (*bag of words*) and topic modeling, while the latter contain SVM (*support vector machine*) and LR (*logistic regression*).
Z
Zhuoyuan 已提交
61

62
The BOW model does not capture all the information in a piece of text, as it ignores syntax and grammar and just treats the text as a set of words. For example, “this movie is extremely bad“ and “boring, dull, and empty work” describe very similar semantic meaning, yet their BOW representations have with little similarity. Furthermore, “the movie is bad“ and “the movie is not bad“ have high similarity with BOW features, but they express completely opposite semantics.
Z
Zhuoyuan 已提交
63

64
This chapter introduces a deep learning model that handles these issues in BOW. Our model embeds texts into a low-dimensional space and takes word order into consideration. It is an end-to-end framework and it has large performance improvement over traditional methods \[[1](#Reference)\].
Z
Zhuoyuan 已提交
65 66

## Model Overview
L
liaogang 已提交
67

68
The model we used in this chapter uses **Convolutional Neural Networks** (**CNNs**) and **Recurrent Neural Networks** (**RNNs**) with some specific extensions.
Z
Zhuoyuan 已提交
69 70 71


### Convolutional Neural Networks for Texts (CNN)
L
liaogang 已提交
72

73
**Convolutional Neural Networks** are frequently applied to data with grid-like topology such as two-dimensional images and one-dimensional texts. A CNN can extract multiple local features, combine them, and produce high-level abstractions, which correspond to semantic understanding. Empirically, CNN is shown to be efficient for image and text modeling.
Z
Zhuoyuan 已提交
74

75
CNN mainly contains convolution and pooling operation, with versatile combinations in various applications. Here, we briefly describe a CNN used to classify texts\[[1](#Refernce)\], as shown in Figure 1.
Z
Zhuoyuan 已提交
76 77 78


<p align="center">
Y
Yi Wang 已提交
79
<img src="image/text_cnn_en.png" width = "80%" align="center"/><br/>
80
Figure 1. CNN for text modeling.
Z
Zhuoyuan 已提交
81
</p>
Y
Yi Wang 已提交
82

83
Let $n$ be the length of the sentence to process, and the $i$-th word has embedding as $x_i\in\mathbb{R}^k$,where $k$ is the embedding dimensionality.
Z
Zhuoyuan 已提交
84

85
First, we concatenate the words by piecing together every $h$ words, each as a window of length $h$. This window is denoted as $x_{i:i+h-1}$, consisting of $x_{i},x_{i+1},\ldots,x_{i+h-1}$, where $x_i$ is the first word in the window and $i$ takes value ranging from $1$ to $n-h+1$: $x_{i:i+h-1}\in\mathbb{R}^{hk}$.
Z
Zhuoyuan 已提交
86

87
Next, we apply the convolution operation: we apply the kernel $w\in\mathbb{R}^{hk}$ in each window, extracting features $c_i=f(w\cdot x_{i:i+h-1}+b)$, where $b\in\mathbb{R}$ is the bias and $f$ is a non-linear activation function such as $sigmoid$. Convolving by the kernel at every window ${x_{1:h},x_{2:h+1},\ldots,x_{n-h+1:n}}$ produces a feature map in the following form:
Z
Zhuoyuan 已提交
88 89 90

$$c=[c_1,c_2,\ldots,c_{n-h+1}], c \in \mathbb{R}^{n-h+1}$$

91
Next, we apply *max pooling* over time to represent the whole sentence $\hat c$, which is the maximum element across the feature map:
Z
Zhuoyuan 已提交
92 93 94 95 96

$$\hat c=max(c)$$

In real applications, we will apply multiple CNN kernels on the sentences. It can be implemented efficiently by concatenating the kernels together as a matrix. Also, we can use CNN kernels with different kernel size (as shown in Figure 1 in different colors).

97
Finally, concatenating the resulting features produces a fixed-length representation, which can be combined with a softmax to form the model for the sentiment analysis problem.
Z
Zhuoyuan 已提交
98

99
For short texts, the aforementioned CNN model can achieve very high accuracy \[[1](#Reference)\]. If we want to extract more abstract representations, we may apply a deeper CNN model \[[2](#Reference),[3](#Reference)\].
Z
Zhuoyuan 已提交
100

L
liaogang 已提交
101 102
### Recurrent Neural Network (RNN)

103
RNN is an effective model for sequential data. In terms of computability, the RNN is Turing-complete \[[4](#Reference)\]. Since NLP is a classical problem on sequential data, the RNN, especially its variant LSTM\[[5](#Reference)\]), achieves state-of-the-art performance on various NLP tasks, such as language modeling, syntax parsing, POS-tagging, image captioning, dialog, machine translation, and so forth.
Z
Zhuoyuan 已提交
104 105 106

<p align="center">
<img src="image/rnn.png" width = "60%" align="center"/><br/>
107
Figure 2. An illustration of an unfolded RNN in time.
Z
Zhuoyuan 已提交
108
</p>
L
fix bug  
livc 已提交
109

110
As shown in Figure 2, we unfold an RNN: at the $t$-th time step, the network takes two inputs: the $t$-th input vector $\vec{x_t}$ and the latent state from the last time-step $\vec{h_{t-1}}$. From those, it computes the latent state of the current step $\vec{h_t}$. This process is repeated until all inputs are consumed. Denoting the RNN as function $f$, it can be formulated as follows:
Z
Zhuoyuan 已提交
111

112
$$\vec{h_t}=f(\vec{x_t},\vec{h_{t-1}})=\sigma(W_{xh}\vec{x_t}+W_{hh}\vec{h_{h-1}}+\vec{b_h})$$
Z
Zhuoyuan 已提交
113

114
where $W_{xh}$ is the weight matrix to feed into the latent layer; $W_{hh}$ is the latent-to-latent matrix; $b_h$ is the latent bias and $\sigma$ refers to the $sigmoid$ function.
Z
Zhuoyuan 已提交
115

116
In NLP, words are often represented as a one-hot vectors and then mapped to an embedding. The embedded feature goes through an RNN as input $x_t$ at every time step. Moreover, we can add other layers on top of RNN, such as a deep or stacked RNN. Finally, the last latent state may be used as a feature for sentence classification.
Z
Zhuoyuan 已提交
117

L
liaogang 已提交
118 119
### Long-Short Term Memory (LSTM)

120
Training an RNN on long sequential data sometimes leads to the gradient vanishing or exploding\[[6](#)\]. To solve this problem Hochreiter S, Schmidhuber J. (1997) proposed **Long Short Term Memory** (LSTM)\[[5](#Reference)\]).
Z
Zhuoyuan 已提交
121

122
Compared to the structure of a simple RNN, an LSTM includes memory cell $c$, input gate $i$, forget gate $f$ and output gate $o$. These gates and memory cells dramatically improve the ability for the network to handle long sequences. We can formulate the **LSTM-RNN**, denoted as a function $F$, as follows:
Z
Zhuoyuan 已提交
123 124 125 126 127 128 129

$$ h_t=F(x_t,h_{t-1})$$

$F$ contains following formulations\[[7](#Reference)\]:
\begin{align}
i_t & = \sigma(W_{xi}x_t+W_{hi}h_{h-1}+W_{ci}c_{t-1}+b_i)\\\\
f_t & = \sigma(W_{xf}x_t+W_{hf}h_{h-1}+W_{cf}c_{t-1}+b_f)\\\\
130
c_t & = f_t\odot c_{t-1}+i_t\odot \tanh(W_{xc}x_t+W_{hc}h_{h-1}+b_c)\\\\
Z
Zhuoyuan 已提交
131
o_t & = \sigma(W_{xo}x_t+W_{ho}h_{h-1}+W_{co}c_{t}+b_o)\\\\
132
h_t & = o_t\odot \tanh(c_t)\\\\
Z
Zhuoyuan 已提交
133 134
\end{align}

135
In the equation,$i_t, f_t, c_t, o_t$ stand for input gate, forget gate, memory cell and output gate, respectively. $W$ and $b$ are model parameters, $\tanh$ is a hyperbolic tangent, and $\odot$ denotes an element-wise product operation. The input gate controls the magnitude of the new input into the memory cell $c$; the forget gate controls the memory propagated from the last time step; the output gate controls the magnitutde of the output. The three gates are computed similarly with different parameters, and they influence memory cell $c$ separately, as shown in Figure 3:
Y
Yi Wang 已提交
136

Z
Zhuoyuan 已提交
137
<p align="center">
Y
Yi Wang 已提交
138 139
<img src="image/lstm_en.png" width = "65%" align="center"/><br/>
Figure 3. LSTM at time step $t$ [7].
Z
Zhuoyuan 已提交
140
</p>
Y
Yi Wang 已提交
141

Z
Zhuoyuan 已提交
142
LSTM enhances the ability of considering long-term reliance, with the help of memory cell and gate. Similar structures are also proposed in Gated Recurrent Unit (GRU)\[[8](Reference)\] with simpler design. **The structures are still similar to RNN, though with some modifications (As shown in Figure 2), i.e., latent status depends on input as well as the latent status of last time-step, and the process goes on recurrently until all input are consumed:**
Z
Zhuoyuan 已提交
143 144 145 146 147

$$ h_t=Recrurent(x_t,h_{t-1})$$
where $Recrurent$ is a simple RNN, GRU or LSTM.

### Stacked Bidirectional LSTM
L
liaogang 已提交
148

Z
Zhuoyuan 已提交
149 150 151 152 153
For vanilla LSTM, $h_t$ contains input information from previous time-step $1..t-1$ context. We can also apply an RNN with reverse-direction to take successive context $t+1…n$ into consideration. Combining constructing deep RNN (deeper RNN can contain more abstract and higher level semantic), we can design structures with deep stacked bidirectional LSTM to model sequential data\[[9](#Reference)\].

As shown in Figure 4 (3-layer RNN), odd/even layers are forward/reverse LSTM. Higher layers of LSTM take lower-layers LSTM as input, and the top-layer LSTM produces a fixed length vector by max-pooling (this representation considers contexts from previous and successive words for higher-level abstractions). Finally, we concatenate the output to a softmax layer for classification.

<p align="center">
Y
Yi Wang 已提交
154 155
<img src="image/stacked_lstm_en.png" width=450><br/>
Figure 4. Stacked Bidirectional LSTM for NLP modeling.
Z
Zhuoyuan 已提交
156 157
</p>

L
liaogang 已提交
158
## Dataset
Z
Zhuoyuan 已提交
159

L
liaogang 已提交
160
We use [IMDB](http://ai.stanford.edu/%7Eamaas/data/sentiment/) dataset for sentiment analysis in this tutorial, which consists of 50,000 movie reviews split evenly into 25k train and 25k test sets. In the labeled train/test sets, a negative review has a score <= 4 out of 10, and a positive review has a score >= 7 out of 10.
Z
Zhuoyuan 已提交
161

162
`paddle.datasets` package encapsulates multiple public datasets, including `cifar`, `imdb`, `mnist`, `moivelens`, and `wmt14`, etc. There's no need for us to manually download and preprocess IMDB.
Z
Zhuoyuan 已提交
163

164
After issuing a command `python train.py`, training will start immediately. The details will be unpacked by the following sessions to see how it works.
Z
Zhuoyuan 已提交
165 166


L
liaogang 已提交
167
## Model Structure
Z
Zhuoyuan 已提交
168

L
liaogang 已提交
169
### Initialize PaddlePaddle
Z
Zhuoyuan 已提交
170

L
liaogang 已提交
171
We must import and initialize PaddlePaddle (enable/disable GPU, set the number of trainers, etc).
Z
Zhuoyuan 已提交
172

L
liaogang 已提交
173 174 175
```python
import sys
import paddle.v2 as paddle
Z
Zhuoyuan 已提交
176

L
liaogang 已提交
177 178 179
# PaddlePaddle init
paddle.init(use_gpu=False, trainer_count=1)
```
Z
Zhuoyuan 已提交
180

L
liaogang 已提交
181
As alluded to in section [Model Overview](#model-overview), here we provide the implementations of both Text CNN and Stacked-bidirectional LSTM models.
Z
Zhuoyuan 已提交
182

L
liaogang 已提交
183
### Text Convolution Neural Network (Text CNN)
Z
Zhuoyuan 已提交
184

L
liaogang 已提交
185
We create a neural network `convolution_net` as the following snippet code.
Z
Zhuoyuan 已提交
186

L
liaogang 已提交
187
Note: `paddle.networks.sequence_conv_pool` includes both convolution and pooling layer operations.
Z
Zhuoyuan 已提交
188 189

```python
L
liaogang 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
def convolution_net(input_dim, class_dim=2, emb_dim=128, hid_dim=128):
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)
    output = paddle.layer.fc(input=[conv_3, conv_4],
                             size=class_dim,
                             act=paddle.activation.Softmax())
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
204 205
```

L
liaogang 已提交
206
1. Define input data and its dimension
Z
Zhuoyuan 已提交
207

L
liaogang 已提交
208
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `convolution_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
209

L
liaogang 已提交
210
1. Define Classifier
Z
Zhuoyuan 已提交
211

L
liaogang 已提交
212 213 214
    The above Text CNN network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.

1. Define Loss Function
Z
Zhuoyuan 已提交
215

216
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
Z
Zhuoyuan 已提交
217

L
liaogang 已提交
218
#### Stacked bidirectional LSTM
Z
Zhuoyuan 已提交
219

L
liaogang 已提交
220
We create a neural network `stacked_lstm_net` as below.
Z
Zhuoyuan 已提交
221 222 223

```python
def stacked_lstm_net(input_dim,
L
liaogang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109
    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    """
    assert stacked_num % 2 == 1

    layer_attr = paddle.attr.Extra(drop_rate=0.5)
    fc_para_attr = paddle.attr.Param(learning_rate=1e-3)
    lstm_para_attr = paddle.attr.Param(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = paddle.attr.Param(initial_std=0., l2_rate=0.)
    relu = paddle.activation.Relu()
    linear = paddle.activation.Linear()

    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    fc1 = paddle.layer.fc(input=emb,
                          size=hid_dim,
                          act=linear,
                          bias_attr=bias_attr)
    lstm1 = paddle.layer.lstmemory(
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
        fc = paddle.layer.fc(input=inputs,
                             size=hid_dim,
                             act=linear,
                             param_attr=para_attr,
                             bias_attr=bias_attr)
        lstm = paddle.layer.lstmemory(
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

    fc_last = paddle.layer.pooling(
        input=inputs[0], pooling_type=paddle.pooling.Max())
    lstm_last = paddle.layer.pooling(
        input=inputs[1], pooling_type=paddle.pooling.Max())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)

    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
    return cost
Z
Zhuoyuan 已提交
289 290
```

L
liaogang 已提交
291
1. Define input data and its dimension
Y
Yi Wang 已提交
292

L
liaogang 已提交
293
    Parameter `input_dim` denotes the dictionary size, and `class_dim` is the number of categories. In `stacked_lstm_net`, the input to the network is defined in `paddle.layer.data`.
Z
Zhuoyuan 已提交
294

L
liaogang 已提交
295
1. Define Classifier
Z
Zhuoyuan 已提交
296

L
liaogang 已提交
297
    The above stacked bidirectional LSTM network extracts high-level features and maps them to a vector of the same size as the categories. `paddle.activation.Softmax` function or classifier is then used for calculating the probability of the sentence belonging to each category.
Z
Zhuoyuan 已提交
298

L
liaogang 已提交
299
1. Define Loss Function
Z
Zhuoyuan 已提交
300

301
    In the context of supervised learning, labels of the training set are defined in `paddle.layer.data`, too. During training, cross-entropy is used as loss function in `paddle.layer.classification_cost` and as the output of the network; During testing, the outputs are the probabilities calculated in the classifier.
Z
Zhuoyuan 已提交
302 303


L
liaogang 已提交
304
To reiterate, we can either invoke `convolution_net` or `stacked_lstm_net`.
Y
Yi Wang 已提交
305

Z
Zhuoyuan 已提交
306
```python
L
liaogang 已提交
307 308 309 310 311 312 313 314
word_dict = paddle.dataset.imdb.word_dict()
dict_dim = len(word_dict)
class_dim = 2

# option 1
cost = convolution_net(dict_dim, class_dim=class_dim)
# option 2
# cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
Z
Zhuoyuan 已提交
315 316 317 318
```

## Model Training

L
liaogang 已提交
319
### Define Parameters
Z
Zhuoyuan 已提交
320

L
liaogang 已提交
321
First, we create the model parameters according to the previous model configuration `cost`.
Z
Zhuoyuan 已提交
322

L
liaogang 已提交
323 324 325
```python
# create parameters
parameters = paddle.parameters.create(cost)
Z
Zhuoyuan 已提交
326 327
```

L
liaogang 已提交
328
### Create Trainer
Z
Zhuoyuan 已提交
329

L
liaogang 已提交
330 331
Before jumping into creating a training module, algorithm setting is also necessary.
Here we specified `Adam` optimization algorithm via `paddle.optimizer`.
Z
Zhuoyuan 已提交
332

L
liaogang 已提交
333 334 335 336 337 338 339 340 341 342 343
```python
# create optimizer
adam_optimizer = paddle.optimizer.Adam(
    learning_rate=2e-3,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(average_window=0.5))

# create trainer
trainer = paddle.trainer.SGD(cost=cost,
                                parameters=parameters,
                                update_equation=adam_optimizer)
Z
Zhuoyuan 已提交
344 345
```

L
liaogang 已提交
346
### Training
Z
Zhuoyuan 已提交
347

L
liaogang 已提交
348
`paddle.dataset.imdb.train()` will yield records during each pass, after shuffling, a batch input is generated for training.
Z
Zhuoyuan 已提交
349

L
liaogang 已提交
350 351 352 353 354
```python
train_reader = paddle.batch(
    paddle.reader.shuffle(
        lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
    batch_size=100)
Z
Zhuoyuan 已提交
355

L
liaogang 已提交
356 357
test_reader = paddle.batch(
    lambda: paddle.dataset.imdb.test(word_dict), batch_size=100)
Z
Zhuoyuan 已提交
358 359
```

L
liaogang 已提交
360
`feeding` is devoted to specifying the correspondence between each yield record and `paddle.layer.data`. For instance, the first column of data generated by `paddle.dataset.imdb.train()` corresponds to `word` feature.
Z
Zhuoyuan 已提交
361

L
liaogang 已提交
362 363
```python
feeding = {'word': 0, 'label': 1}
Z
Zhuoyuan 已提交
364 365
```

366
Callback function `event_handler` will be invoked to track training progress when a pre-defined event happens.
Z
Zhuoyuan 已提交
367

L
liaogang 已提交
368 369 370 371 372 373 374 375 376 377
```python
def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "\nPass %d, Batch %d, Cost %f, %s" % (
                event.pass_id, event.batch_id, event.cost, event.metrics)
        else:
            sys.stdout.write('.')
            sys.stdout.flush()
    if isinstance(event, paddle.event.EndPass):
G
gongweibao 已提交
378
        result = trainer.test(reader=test_reader, feeding=feeding)
L
liaogang 已提交
379
        print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
Z
Zhuoyuan 已提交
380 381
```

L
liaogang 已提交
382
Finally, we can invoke `trainer.train` to start training:
Z
Zhuoyuan 已提交
383

L
liaogang 已提交
384 385 386 387
```python
trainer.train(
    reader=train_reader,
    event_handler=event_handler,
H
Helin Wang 已提交
388
    feeding=feeding,
L
liaogang 已提交
389
    num_passes=10)
Z
Zhuoyuan 已提交
390 391 392
```


L
liaogang 已提交
393
## Conclusion
Z
Zhuoyuan 已提交
394

395
In this chapter, we use sentiment analysis as an example to introduce applying deep learning models on end-to-end short text classification, as well as how to use PaddlePaddle to implement the model. Meanwhile, we briefly introduce two models for text processing: CNN and RNN. In following chapters, we will see how these models can be applied in other tasks.
Z
Zhuoyuan 已提交
396 397

## Reference
L
liaogang 已提交
398

Z
Zhuoyuan 已提交
399 400 401 402 403 404 405 406 407 408 409
1. Kim Y. [Convolutional neural networks for sentence classification](http://arxiv.org/pdf/1408.5882)[J]. arXiv preprint arXiv:1408.5882, 2014.
2. Kalchbrenner N, Grefenstette E, Blunsom P. [A convolutional neural network for modelling sentences](http://arxiv.org/pdf/1404.2188.pdf?utm_medium=App.net&utm_source=PourOver)[J]. arXiv preprint arXiv:1404.2188, 2014.
3. Yann N. Dauphin, et al. [Language Modeling with Gated Convolutional Networks](https://arxiv.org/pdf/1612.08083v1.pdf)[J] arXiv preprint arXiv:1612.08083, 2016.
4. Siegelmann H T, Sontag E D. [On the computational power of neural nets](http://research.cs.queensu.ca/home/akl/cisc879/papers/SELECTED_PAPERS_FROM_VARIOUS_SOURCES/05070215382317071.pdf)[C]//Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992: 440-449.
5. Hochreiter S, Schmidhuber J. [Long short-term memory](http://web.eecs.utk.edu/~itamar/courses/ECE-692/Bobby_paper1.pdf)[J]. Neural computation, 1997, 9(8): 1735-1780.
6. Bengio Y, Simard P, Frasconi P. [Learning long-term dependencies with gradient descent is difficult](http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf)[J]. IEEE transactions on neural networks, 1994, 5(2): 157-166.
7. Graves A. [Generating sequences with recurrent neural networks](http://arxiv.org/pdf/1308.0850)[J]. arXiv preprint arXiv:1308.0850, 2013.
8. Cho K, Van Merriënboer B, Gulcehre C, et al. [Learning phrase representations using RNN encoder-decoder for statistical machine translation](http://arxiv.org/pdf/1406.1078)[J]. arXiv preprint arXiv:1406.1078, 2014.
9. Zhou J, Xu W. [End-to-end learning of semantic role labeling using recurrent neural networks](http://www.aclweb.org/anthology/P/P15/P15-1109.pdf)[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.

<br/>
410
This tutorial is contributed by <a xmlns:cc="http://creativecommons.org/ns#" href="http://book.paddlepaddle.org" property="cc:attributionName" rel="cc:attributionURL">PaddlePaddle</a>, and licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.
411

Z
Zhuoyuan 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
</div>
<!-- You can change the lines below now. -->

<script type="text/javascript">
marked.setOptions({
  renderer: new marked.Renderer(),
  gfm: true,
  breaks: false,
  smartypants: true,
  highlight: function(code, lang) {
    code = code.replace(/&amp;/g, "&")
    code = code.replace(/&gt;/g, ">")
    code = code.replace(/&lt;/g, "<")
    code = code.replace(/&nbsp;/g, " ")
    return hljs.highlightAuto(code, [lang]).value;
  }
});
document.getElementById("context").innerHTML = marked(
430
        document.getElementById("markdown").innerHTML)
Z
Zhuoyuan 已提交
431 432
</script>
</body>