train.py 7.1 KB
Newer Older
1 2
import math
import numpy as np
3
import gzip
4 5
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
6
import paddle.v2.evaluator as evaluator
7

8 9 10 11
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_len = len(verb_dict)
12

13 14 15 16 17 18 19
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
default_std = 1 / math.sqrt(hidden_dim) / 3.0
mix_hidden_lr = 1e-3
20 21


22 23 24
def d_type(size):
    return paddle.data_type.integer_value_sequence(size)

25

26 27
def db_lstm():
    #8 features
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    word = paddle.layer.data(name='word_data', type=d_type(word_dict_len))
    predicate = paddle.layer.data(name='verb_data', type=d_type(pred_len))

    ctx_n2 = paddle.layer.data(name='ctx_n2_data', type=d_type(word_dict_len))
    ctx_n1 = paddle.layer.data(name='ctx_n1_data', type=d_type(word_dict_len))
    ctx_0 = paddle.layer.data(name='ctx_0_data', type=d_type(word_dict_len))
    ctx_p1 = paddle.layer.data(name='ctx_p1_data', type=d_type(word_dict_len))
    ctx_p2 = paddle.layer.data(name='ctx_p2_data', type=d_type(word_dict_len))
    mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_len))

    emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static=True)
    std_0 = paddle.attr.Param(initial_std=0.)
    std_default = paddle.attr.Param(initial_std=default_std)

    predicate_embedding = paddle.layer.embedding(
        size=word_dim,
        input=predicate,
45
        param_attr=paddle.attr.Param(name='vemb', initial_std=default_std))
46 47 48 49 50
    mark_embedding = paddle.layer.embedding(
        size=mark_dim, input=mark, param_attr=std_0)

    word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
    emb_layers = [
51 52
        paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
        for x in word_input
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    ]
    emb_layers.append(predicate_embedding)
    emb_layers.append(mark_embedding)

    hidden_0 = paddle.layer.mixed(
        size=hidden_dim,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=emb, param_attr=std_default) for emb in emb_layers
        ])

    lstm_para_attr = paddle.attr.Param(initial_std=0.0, learning_rate=1.0)
    hidden_para_attr = paddle.attr.Param(
        initial_std=default_std, learning_rate=mix_hidden_lr)

    lstm_0 = paddle.layer.lstmemory(
        input=hidden_0,
        act=paddle.activation.Relu(),
        gate_act=paddle.activation.Sigmoid(),
        state_act=paddle.activation.Sigmoid(),
        bias_attr=std_0,
        param_attr=lstm_para_attr)

    #stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = paddle.layer.mixed(
            size=hidden_dim,
            bias_attr=std_default,
            input=[
                paddle.layer.full_matrix_projection(
                    input=input_tmp[0], param_attr=hidden_para_attr),
                paddle.layer.full_matrix_projection(
                    input=input_tmp[1], param_attr=lstm_para_attr)
            ])

        lstm = paddle.layer.lstmemory(
            input=mix_hidden,
            act=paddle.activation.Relu(),
            gate_act=paddle.activation.Sigmoid(),
            state_act=paddle.activation.Sigmoid(),
            reverse=((i % 2) == 1),
            bias_attr=std_0,
            param_attr=lstm_para_attr)

        input_tmp = [mix_hidden, lstm]

    feature_out = paddle.layer.mixed(
        size=label_dict_len,
        bias_attr=std_default,
        input=[
            paddle.layer.full_matrix_projection(
                input=input_tmp[0], param_attr=hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input=input_tmp[1], param_attr=lstm_para_attr)
        ], )

112
    return feature_out
113 114 115 116 117 118 119 120 121 122 123 124


def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        f.read(16)  # skip header.
        return np.fromfile(f, dtype=np.float32).reshape(h, w)


def main():
    paddle.init(use_gpu=False, trainer_count=1)

    # define network topology
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    feature_out = db_lstm()
    target = paddle.layer.data(name='target', type=d_type(label_dict_len))
    crf_cost = paddle.layer.crf(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(
            name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))

    crf_dec = paddle.layer.crf_decoding(
        size=label_dict_len,
        input=feature_out,
        label=target,
        param_attr=paddle.attr.Param(name='crfw'))
    evaluator.sum(input=crf_dec)
140 141

    # create parameters
142
    parameters = paddle.parameters.create(crf_cost)
143 144 145 146 147 148 149 150 151 152
    parameters.set('emb', load_parameter(conll05.get_embedding(), 44068, 32))

    # create optimizer
    optimizer = paddle.optimizer.Momentum(
        momentum=0,
        learning_rate=2e-2,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(
            average_window=0.5, max_average_window=10000), )

153
    trainer = paddle.trainer.SGD(
154 155 156 157
        cost=crf_cost,
        parameters=parameters,
        update_equation=optimizer,
        extra_layers=crf_dec)
158

D
dangqingqing 已提交
159
    reader = paddle.batch(
160
        paddle.reader.shuffle(conll05.test(), buf_size=8192), batch_size=10)
161

D
dangqingqing 已提交
162
    feeding = {
163 164 165 166 167 168 169 170 171 172 173 174 175 176
        'word_data': 0,
        'ctx_n2_data': 1,
        'ctx_n1_data': 2,
        'ctx_0_data': 3,
        'ctx_p1_data': 4,
        'ctx_p2_data': 5,
        'verb_data': 6,
        'mark_data': 7,
        'target': 8
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
177 178 179 180 181 182 183 184 185 186 187 188 189 190
                print "Pass %d, Batch %d, Cost %f, %s" % (
                    event.pass_id, event.batch_id, event.cost, event.metrics)
            if event.batch_id % 1000 == 0:
                result = trainer.test(reader=reader, feeding=feeding)
                print "\nTest with Pass %d, Batch %d, %s" % (
                    event.pass_id, event.batch_id, result.metrics)

        if isinstance(event, paddle.event.EndPass):
            # save parameters
            with gzip.open('params_pass_%d.tar.gz' % event.pass_id, 'w') as f:
                parameters.to_tar(f)

            result = trainer.test(reader=reader, feeding=feeding)
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
191 192 193 194

    trainer.train(
        reader=reader,
        event_handler=event_handler,
195
        num_passes=1,
D
dangqingqing 已提交
196
        feeding=feeding)
197

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    test_creator = paddle.dataset.conll05.test()
    test_data = []
    for item in test_creator():
        test_data.append(item[0:8])
        if len(test_data) == 1:
            break

    predict = paddle.layer.crf_decoding(
        size=label_dict_len,
        input=feature_out,
        param_attr=paddle.attr.Param(name='crfw'))
    probs = paddle.infer(
        output_layer=predict,
        parameters=parameters,
        input=test_data,
        field='id')
    assert len(probs) == len(test_data[0][0])
    labels_reverse = {}
    for (k, v) in label_dict.items():
        labels_reverse[v] = k
    pre_lab = [labels_reverse[i] for i in probs]
    print pre_lab

221 222 223

if __name__ == '__main__':
    main()