未验证 提交 82b1c12a 编写于 作者: J Jason 提交者: GitHub

Merge pull request #104 from jiangjiajun/develop

modify optimizer and fix conflicts
......@@ -113,6 +113,7 @@ def tf2paddle(model_path,
optimizer.strip_graph()
optimizer.merge_activation()
optimizer.merge_bias()
optimizer.make_nchw_input_output()
optimizer.remove_transpose()
mapper.save_inference_model(save_dir)
......
......@@ -51,7 +51,7 @@ class TFGraphNode(GraphNode):
@property
def dtype(self):
keys = ['dtype', 'Tidx', 'T']
keys = ['dtype', 'Tidx', 'T', 'DstT']
for k in keys:
dtype = self.layer.attr[k].type
if dtype > 0:
......
......@@ -1170,6 +1170,37 @@ class TFOpMapper(OpMapper):
output=node,
param_attr=attr)
def GreaterEqual(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {"x": x, "y": y}
node.fluid_code.add_layer("greater_equal",
inputs=inputs,
output=node,
param_attr=None)
def RandomUniform(self, node):
shape = self.graph.get_node(node.layer.input[0], copy=True)
self.add_omit_nodes(shape.layer_name, node.layer_name)
if shape.layer_type == "Const":
shape = shape.value.tolist()
else:
shape = self.decoder.infer_shape_tensor(shape)
if len(shape) == 4 and node.tf_data_format == "NHWC":
shape = [shape[i] for i in [0, 3, 1, 2]]
attr = {"shape": shape, "min": 0.0, "max": 0.9999}
if shape[0] < 0:
input = self.batch_node
node.fluid_code.add_layer("uniform_random_batch_size_like",
inputs=input,
output=node,
param_attr=attr)
else:
node.fluid_code.add_layer("uniform_random",
inputs=None,
output=node,
param_attr=attr)
def SquaredDifference(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
......
......@@ -48,7 +48,8 @@ class TFOpMapperNHWC(OpMapper):
'RealDiv': 'elementwise_div',
'Sub': 'elementwise_sub',
'Maximum': 'elementwise_max',
'Mul': 'elementwise_mul'
'Mul': 'elementwise_mul',
'FloorDiv': 'elementwise_floordiv'
}
def __init__(self, decoder):
......@@ -200,14 +201,15 @@ class TFOpMapperNHWC(OpMapper):
assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
node.layer_name)
dtype = node.dtype
if shape[0] < 0:
self.batch_node = node
attr = {
'dtype': string(dtype),
'shape': shape,
'name': string(node.layer_name),
'append_batch_size': False
}
if shape[0] < 0:
self.batch_node = node
node.fluid_code.add_layer("data",
inputs=None,
output=node,
......@@ -988,19 +990,6 @@ class TFOpMapperNHWC(OpMapper):
output=node,
param_attr=attr)
def FloorDiv(self, node):
x = self.graph.get_node(node.layer.input[0], copy=True)
y = self.graph.get_node(node.layer.input[1], copy=True)
inputs = {'x': x, 'y': y}
node.fluid_code.add_layer("elementwise_div",
inputs=inputs,
output=node,
param_attr=None)
node.fluid_code.add_layer("floor",
inputs=node,
output=node,
param_attr=None)
def Split(self, node):
dim = self.graph.get_node(node.layer.input[0], copy=True)
input = self.graph.get_node(node.layer.input[1], copy=True)
......
......@@ -14,7 +14,9 @@
# TODO useless node remove
from x2paddle.op_mapper.tf_op_mapper import TFOpMapper
from x2paddle.core.fluid_code import Layer
from x2paddle.core.util import *
import copy as cp
class TFOptimizer(object):
......@@ -92,7 +94,6 @@ class TFOptimizer(object):
del out_node.inputs[index]
del self.graph.node_map[node_name]
# TODO activation merge
def merge_activation(self):
act_nodes = list()
for node_name in self.graph.topo_sort:
......@@ -126,7 +127,6 @@ class TFOptimizer(object):
0].output
self.graph.remove_node(act_node_name)
# TODO bias merge
def merge_bias(self):
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
......@@ -170,41 +170,184 @@ class TFOptimizer(object):
self.graph.remove_node(node.layer_name)
def remove_transpose(self):
graph_copy = cp.deepcopy(self.graph)
nhwc_insensitive_ops = [
'Relu', 'Relu6', 'Abs', 'Sigmoid', 'Exp', 'Rsqrt', 'swish_f32',
'LeakyRelu', 'Cast'
]
elementwise_ops = [
'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv',
'GreaterEqual'
]
for node_name in self.graph.topo_sort:
node = graph_copy.get_node(node_name)
if node is None:
continue
if node.layer_type in nhwc_insensitive_ops:
graph_copy.remove_node(node_name)
optimize_ops = [
'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative',
'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor',
'ResizeBilinear'
'ResizeBilinear', "Placeholder"
]
for node_name in self.graph.topo_sort:
node = self.graph.get_node(node_name)
node = graph_copy.get_node(node_name)
if node is None:
continue
if node.layer_type not in optimize_ops:
continue
if node.fluid_code.layers[
-1].op != "transpose" or node.fluid_code.layers[
-1].param_attr["perm"] != [0, 2, 3, 1]:
if node.layer_type in elementwise_ops:
is_nhwc = True
for in_name in node.inputs:
in_node = graph_copy.get_node(in_name)
if hasattr(in_node, "is_nhwc"):
if not in_node.is_nhwc:
is_nhwc = False
else:
if len(in_node.fluid_code.layers) < 2:
is_nhwc = False
continue
if in_node.fluid_code.layers[
-1].op != "transpose" or in_node.fluid_code.layers[
-1].param_attr["perm"] != [0, 2, 3, 1]:
is_nhwc = False
continue
node.is_nhwc = is_nhwc
for i in range(len(self.graph.topo_sort)):
node_name = self.graph.topo_sort[-1 * i - 1]
node = graph_copy.get_node(node_name)
if node is None:
continue
output_names = node.outputs
can_be_removed = True
for out_name in output_names:
out_node = self.graph.get_node(out_name)
if out_node.layer_type == "BiasAdd":
can_be_removed = True
if out_node.fluid_code.layers[
0].op != "transpose" or out_node.fluid_code.layers[
0].param_attr["perm"] != [0, 3, 1, 2]:
if node.layer_type in elementwise_ops:
can_be_removed = True
if len(node.fluid_code.layers) > 1:
can_be_removed = False
break
if not node.is_nhwc:
can_be_removed = False
for out_name in node.outputs:
out_node = graph_copy.get_node(out_name)
if hasattr(out_node, "is_nhwc"):
if not out_node.is_nhwc:
can_be_removed = False
else:
if len(out_node.fluid_code.layers) < 2:
can_be_removed = False
break
if out_node.fluid_code.layers[
0].op != "transpose" or out_node.fluid_code.layers[
0].param_attr["perm"] != [0, 3, 1, 2]:
can_be_removed = False
break
node.can_be_removed = can_be_removed
if can_be_removed and len(output_names) > 0:
last_out = node.fluid_code.layers[-1].inputs
del node.fluid_code.layers[-1]
for node_name in self.graph.topo_sort:
node = graph_copy.get_node(node_name)
if node is None:
continue
if node.layer_type in optimize_ops:
if node.fluid_code.layers[
-1].op != "transpose" or node.fluid_code.layers[
-1].param_attr["perm"] != [0, 2, 3, 1]:
continue
can_be_removed = True
output_names = node.outputs
for out_name in output_names:
out_node = self.graph.get_node(out_name)
if out_node.layer_type == "BiasAdd":
del out_node.fluid_code.layers[0]
out_node.fluid_code.layers[0].inputs['x'] = last_out
else:
out_node = graph_copy.get_node(out_name)
if hasattr(out_node, "can_be_removed"):
if not out_node.can_be_removed:
can_be_removed = False
break
elif out_node.fluid_code.layers[
0].op != "transpose" or out_node.fluid_code.layers[
0].param_attr["perm"] != [0, 3, 1, 2]:
can_be_removed = False
break
if can_be_removed and len(node.fluid_code.layers) > 1:
true_node = self.graph.get_node(node_name)
if true_node.layer_type == "Placeholder":
index = self.graph.input_nodes.index(
true_node.fluid_code.layers[-2].output)
if isinstance(true_node.fluid_code.layers[-1].output,
str):
self.graph.input_nodes[
index] = true_node.fluid_code.layers[-1].output
else:
self.graph.input_nodes[
index] = true_node.fluid_code.layers[
-1].output.layer_name
true_node.fluid_code.layers[
-2].output = true_node.fluid_code.layers[-1].output
node.removed = True
del true_node.fluid_code.layers[-1]
for out_name in output_names:
out_node = self.graph.get_node(out_name)
if out_node.layer_type in elementwise_ops:
continue
out_node.fluid_code.layers[
1].inputs = out_node.fluid_code.layers[0].inputs
del out_node.fluid_code.layers[0]
out_node.fluid_code.layers[0].inputs = last_out
for node_name in self.graph.topo_sort:
node = graph_copy.get_node(node_name)
if node is None:
continue
if node.layer_type in elementwise_ops:
if not node.can_be_removed:
true_node = self.graph.get_node(node_name)
for i, in_name in enumerate(node.inputs):
in_node = graph_copy.get_node(in_name)
if hasattr(in_node, "is_nhwc") and in_node.is_nhwc:
if i == 0:
l = Layer()
l.op = "transpose"
l.inputs = true_node.fluid_code.layers[
0].inputs["x"]
l.param_attr = {"perm": [0, 2, 3, 1]}
l.output = "nhwc_" + l.inputs.layer_name
true_node.fluid_code.layers[0].inputs[
"x"] = l.output
true_node.fluid_code.layers.insert(0, l)
elif i == 1:
l = Layer()
l.op = "transpose"
l.inputs = true_node.fluid_code.layers[
0].inputs["y"]
l.param_attr = {"perm": [0, 2, 3, 1]}
l.output = "nhwc_" + l.inputs.layer_name
true_node.fluid_code.layers[0].inputs[
"y"] = l.output
true_node.fluid_code.layers.insert(0, l)
else:
raise Exception("Unexpected situation happend")
continue
else:
for out_name in node.outputs:
out_node = self.graph.get_node(out_name)
if out_node.layer_type not in elementwise_ops:
assert out_node.fluid_code.layers[
0].op == "transpose", "unexpected situation happend"
out_node.fluid_code.layers[
1].inputs = out_node.fluid_code.layers[0].inputs
del out_node.fluid_code.layers[0]
def make_nchw_input_output(self):
for i, name in enumerate(self.graph.input_nodes):
node = self.graph.get_node(name)
if len(node.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
shape = node.fluid_code.layers[0].param_attr["shape"]
shape = [shape[i] for i in [0, 3, 1, 2]]
node.fluid_code.layers[0].param_attr["shape"] = shape
node.fluid_code.layers[0].output = "nhwc_" + name
attr = {"perm": [0, 2, 3, 1]}
node.fluid_code.add_layer("transpose",
inputs="nhwc_" + name,
output=node,
param_attr=attr)
self.graph.input_nodes[i] = "nhwc_" + name
for i, name in enumerate(self.graph.output_nodes):
node = self.graph.get_node(name)
if node.layer_type != "transpose":
if node.fluid_code.layers[-1].op == "transpose":
node.fluid_code.layers[-2].output = name
del node.fluid_code.layers[-1]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册