Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
e6e5dbb9
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e6e5dbb9
编写于
9月 02, 2019
作者:
J
jiangjiajun
浏览文件
操作
浏览文件
下载
差异文件
modify optimizer and fix conflicts
上级
3eecc825
3abe3a0c
变更
19
展开全部
隐藏空白更改
内联
并排
Showing
19 changed file
with
9569 addition
and
9769 deletion
+9569
-9769
FAQ.md
FAQ.md
+3
-22
README.md
README.md
+28
-15
pytorch_to_onnx.md
pytorch_to_onnx.md
+18
-0
tools/README.md
tools/README.md
+18
-0
x2paddle/__init__.py
x2paddle/__init__.py
+1
-1
x2paddle/convert.py
x2paddle/convert.py
+6
-3
x2paddle/decoder/caffe_pb2.py
x2paddle/decoder/caffe_pb2.py
+7617
-9552
x2paddle/decoder/onnx_backend.py
x2paddle/decoder/onnx_backend.py
+1088
-0
x2paddle/decoder/onnx_decoder.py
x2paddle/decoder/onnx_decoder.py
+116
-69
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+36
-1
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+1
-1
x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
...ddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
+59
-0
x2paddle/op_mapper/onnx_custom_layer/__init__.py
x2paddle/op_mapper/onnx_custom_layer/__init__.py
+104
-0
x2paddle/op_mapper/onnx_custom_layer/register.py
x2paddle/op_mapper/onnx_custom_layer/register.py
+56
-0
x2paddle/op_mapper/onnx_directly_map.py
x2paddle/op_mapper/onnx_directly_map.py
+38
-1
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+294
-52
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+42
-1
x2paddle/optimizer/onnx_optimizer.py
x2paddle/optimizer/onnx_optimizer.py
+0
-1
x2paddle_model_zoo.md
x2paddle_model_zoo.md
+44
-50
未找到文件。
FAQ.md
浏览文件 @
e6e5dbb9
...
...
@@ -5,29 +5,10 @@ A:该提示信息表示无法从TensorFlow的pb模型中获取到输入tensor(
**Q2. TensorFlow模型转换失败怎么解决?**
A: 目前TensorFlow模型转换失败存在几个问题。1) 存在暂未支持的OP,此信息会在转换时输出; 2) NHWC优化导致部分参数出错;3)Batch维度带来的出错 4)其它
对于(1)问题,建议自行添加或发起Issue;
其中(2)、(3)、(4)问题目前没有明确的报错信息,当您遇到模型转换失败时,请尝试如下的步骤后,再进行转换测试
A: 如果并非是由缺少OP导致,那可能是由于TensorFlow模型转换时(NHWC->NCHW格式转换导致),在这种情况下,可以采用关闭格式优化,同时固化输入大小的方式,继续尝试转换,见如下命令,转换过程中,根据提示,输入相应tensor的固化shape大小
```
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization --define_input_shape
```
#### without_data_format_optimization : 关闭NHWC优化
TensorFlow的CV模型,大多的输入格式为
`NHWC`
,而Paddle目前仅支持
`NCHW`
,如若直接转换,需要在conv2d、pool2d等操作前后添加transpose解决,这样会带来性能的损耗。X2Paddle在模型转换过程中,对此问题进行了优化,避免transpose操作带来的性能问题,但目前仅在部分模型上进行了测试,不一定适用于其它模型,因此,如若模型转换存在问题时,我们建议你关闭NHWC的优化。
在模型转换时添加参数 --without_data_format_optimization
```
x2paddle -f tensorflow -m tf.pb -s pd-model --without_data_format_optimization
```
### define_input_shape : 固定Batch大小
受限于不同框架的运行机制,在转换过程中,Batch维度也有一定可能会带来模型转换失败的问题。可以尝试固定Batch维度后再转换
在模型转换时添加参数 --define_input_shape
```
x2paddle -f tensorflow -m tf.pb -s pd-model --define_input_shape
```
如原tensorflow模型的输入shape为
`[None, 224, 224, 3]`
,可添加参数后,根据提示,把输入的shape修改为
`[2, 224, 224, 3]`
> 1. 目前Tensorflow的CV模型大部分均为`NHWC`的输入格式,而Paddle的默认输入格式为`NCHW`,因此X2Paddle在转换过程中,会对如`axis`, `shape`等参数进行转换,适应Paddle的NCHW格式。但在这种情况下,可能会由于TensorFlow模型太复杂,导致出错。
> 2. X2Paddle默认情况,TensorFlow模型转换后得到的Paddle模型为`NCHW`的输入格式。但在指定`--withou_data_format_optimization`后,转换后的Paddle模型输入格式也同样为`NHWC`。
README.md
浏览文件 @
e6e5dbb9
...
...
@@ -4,24 +4,19 @@
X2Paddle支持将其余深度学习框架训练得到的模型,转换至PaddlePaddle模型。
X2Paddle is a toolkit for converting trained model to PaddlePaddle from other deep learning frameworks.
## 更新历史
2019.
08.05
1.
统一tensorflow/caffe/onnx模型转换代码和对外接口
2.
解决上一版caffe2fluid无法转换多分支模型的问题
3.
解决Windows上保存模型无法加载的问题
4.
新增optimizer,优化代码结构,合并conv、batch_norm的bias和激活函数
**如果你需要之前版本的tensorflow2fluid/caffe2fluid/onnx2fluid,可以继续访问release-0.3分支,获取之前版本的代码使用。**
## 转换模型库
X2Paddle在多个主流的CV模型上,测试过TensorFlow/Caffe/ONNX模型的转换,可以在
[
X2Paddle-Model-Zoo
](
x2paddle_model_zoo.md
)
查看我们的模型测试列表。如果你在新的模型上进行了测试转换,也欢迎继续补充该列表;如若无法转换,可通过ISSUE反馈给我们,我们会尽快跟进。
## 环境依赖
python >= 3.5
paddlepaddle >= 1.5.0
**以下依赖只需对应安装自己需要的即可**
转换tensorflow模型 : tensorflow == 1.14.0
转换caffe模型 : caffe == 1.0.0
转换onnx模型 : onnx == 1.5.0 pytorch == 1.1.0
**按需安装以下依赖**
tensorflow : tensorflow == 1.14.0
caffe : caffe == 1.0.0
onnx : onnx == 1.5.0 pytorch == 1.1.0
## 安装
### 安装方式一(推荐)
使用最新的代码版本,可使用如下方式进行安装
...
...
@@ -63,18 +58,36 @@ x2paddle --framework=onnx --model=onnx_model.onnx --save_dir=pd_model
|--prototxt | 当framework为caffe时,该参数指定caffe模型的proto文件路径 |
|--weight | 当framework为caffe时,该参数指定caffe模型的参数文件路径 |
|--save_dir | 指定转换后的模型保存目录路径 |
|--model | 当framework为tensorflow/pmmx时,该参数指定tensorflow的pb模型文件或onnx模型路径 |
|--caffe_proto | [可选]由caffe.proto编译成caffe_pb2.py文件的存放路径,当存在自定义Layer时使用,默认为None |
|--model | 当framework为tensorflow/onnx时,该参数指定tensorflow的pb模型文件或onnx模型路径 |
|--caffe_proto |
**[可选]**
由caffe.proto编译成caffe_pb2.py文件的存放路径,当存在自定义Layer时使用,默认为None |
|--without_data_format_optimization |
**[可选]**
For TensorFlow, 当指定该参数时,关闭NHWC->NCHW的优化,见
[
文档Q2
](
FAQ.md
)
|
|--define_input_shape |
**[可选]**
For TensorFlow, 当指定该参数时,强制用户输入每个Placeholder的shape,见
[
文档Q2
](
FAQ.md
)
|
## 使用转换后的模型
转换后的模型包括
`model_with_code`
和
`inference_model`
两个目录。
`model_with_code`
中保存了模型参数,和转换后的python模型代码
`inference_model`
中保存了序列化的模型结构和参数,可直接使用paddle的接口进行加载,见
[
load_inference_model
](
https://www.paddlepaddle.org.cn/documentation/docs/zh/1.5/api_guides/low_level/inference.html#api-guide-inference
)
## 小工具
X2Paddle提供了工具解决如下问题,详见
[
tools/README.md
](
tools/README.md
)
1.
检测模型是否在PaddleLite中支持
2.
合并模型参数文件
## 相关文档
1.
[
X2Paddle使用过程中常见问题
](
FAQ.md
)
2.
[
如何导出TensorFlow的pb模型
](
export_tf_model.md
)
3.
[
X2Paddle测试模型库
](
x2paddle_model_zoo.md
)
3.
[
X2Paddle测试模型库
](
x2paddle_model_zoo.md
)
4.
[
PyTorch模型导出为ONNX模型
](
pytorch_to_onnx.md
)
## 更新历史
2019.
08.05
1.
统一tensorflow/caffe/onnx模型转换代码和对外接口
2.
解决上一版caffe2fluid无法转换多分支模型的问题
3.
解决Windows上保存模型无法加载的问题
4.
新增optimizer,优化代码结构,合并conv、batch_norm的bias和激活函数
**如果你需要之前版本的tensorflow2fluid/caffe2fluid/onnx2fluid,可以继续访问release-0.3分支,获取之前版本的代码使用。**
## Acknowledgements
...
...
pytorch_to_onnx.md
0 → 100644
浏览文件 @
e6e5dbb9
## PyTorch模型导出为ONNX模型
目前onnx2paddle主要支持onnx operator version 9。 用户可通过如下示例代码,将torchvison或者自己开发写的模型转换成onnx model:
```
#coding: utf-8
import torch
import torchvision
# 指定输入大小的shape
dummy_input = torch.randn(1, 3, 224, 224)
# 构建pytorch model,并载入模型参数
resnet18 = torchvision.models.resnet18(pretrained=True)
# 导出resnet18.onnx模型文件
torch.onnx.export(resnet18, dummy_input, "resnet18.onnx",verbose=True)
```
tools/README.md
0 → 100644
浏览文件 @
e6e5dbb9
### 一、PaddleLite部署
使用X2Paddle转换后的模型均可以使用Paddle Fluid进行预测。但对于PaddleLite上的部署,则需要检查模型中的OP是否都在PaddleLite中支持。使用
`check_for_lite.py`
可以进行检查。
```
python tools/check_for_lite.py paddle_model/inference_model/__model__
```
### 二、模型参数合并
X2Paddle转换后产出的路径下包括两个目录,
1.
`model_with_code`
: 包含保存的参数文件和模型python代码文件,供用户debug
2.
`inference_model`
: 参数文件和序列化的模型结构文件,供用户预测部署
其中在
`inference_model`
中,X2Paddle将每个参数独立保存在不同的文件中(文件名和参数名一致),用户可使用
`merge_params.py`
将参数文件合并成一个文件使用
```
python tools/merge_params.py paddle_model/inference_model new_model_dir
```
合并参数后的模型保存在
`new_model_dir`
中
x2paddle/__init__.py
浏览文件 @
e6e5dbb9
__version__
=
"0.4.
3
"
__version__
=
"0.4.
5
"
x2paddle/convert.py
浏览文件 @
e6e5dbb9
...
...
@@ -143,14 +143,17 @@ def onnx2paddle(model_path, save_dir):
except
:
print
(
"onnx is not installed, use
\"
pip install onnx==1.5.0
\"
."
)
return
print
(
"Now translating model from onnx to paddle."
)
from
x2paddle.decoder.onnx_decoder
import
ONNXDecoder
from
x2paddle.op_mapper.onnx_op_mapper
import
ONNXOpMapper
from
x2paddle.optimizer.onnx_optimizer
import
ONNXOptimizer
print
(
"Now translating model from onnx to paddle."
)
model
=
ONNXDecoder
(
model_path
)
from
x2paddle.op_mapper.onnx_op_mapper
import
ONNXOpMapper
mapper
=
ONNXOpMapper
(
model
)
from
x2paddle.optimizer.onnx_optimizer
import
ONNXOptimizer
optimizer
=
ONNXOptimizer
(
mapper
)
optimizer
.
delete_redundance_code
()
mapper
.
save_inference_model
(
save_dir
)
...
...
x2paddle/decoder/caffe_pb2.py
浏览文件 @
e6e5dbb9
此差异已折叠。
点击以展开。
x2paddle/decoder/onnx_backend.py
0 → 100644
浏览文件 @
e6e5dbb9
此差异已折叠。
点击以展开。
x2paddle/decoder/onnx_decoder.py
浏览文件 @
e6e5dbb9
...
...
@@ -23,6 +23,7 @@ from onnx.helper import get_attribute_value, make_attribute
from
onnx.shape_inference
import
infer_shapes
from
onnx.mapping
import
TENSOR_TYPE_TO_NP_TYPE
from
onnx.numpy_helper
import
to_array
from
onnx
import
AttributeProto
,
TensorProto
,
GraphProto
from
collections
import
OrderedDict
as
Dict
import
onnx
import
numpy
as
np
...
...
@@ -44,7 +45,7 @@ class ONNXGraphNode(GraphNode):
self
.
attr_map
=
self
.
get_attr_map
()
self
.
dtype_map
=
{
1
:
"float32"
,
3
:
"int32"
,
9
:
"int64"
}
self
.
weight_inputs
=
list
()
self
.
out_shapes
=
None
self
.
out_shapes
=
list
()
self
.
dtype
=
None
def
get_attr_map
(
self
):
...
...
@@ -58,11 +59,10 @@ class ONNXGraphNode(GraphNode):
@
property
def
value
(
self
):
assert
'Constant'
in
self
.
layer_type
,
"Only Constant node has value."
attr
=
self
.
layer
.
attr
[
'value'
]
if
'value'
in
self
.
attr_map
:
return
default
assert
'Constant'
in
self
.
layer_type
,
"Only Constant | ConstantOfShape node has value."
attr
=
self
.
layer
.
attribute
[
'value'
]
if
'value'
not
in
self
.
attr_map
:
return
None
return
self
.
attr_map
[
name
]
def
get_attribute_value2
(
self
,
attr
):
...
...
@@ -110,23 +110,26 @@ class ONNXGraphDataNode(GraphNode):
def
out_shapes
(
self
):
values
=
self
.
layer
.
type
.
tensor_type
.
shape
.
dim
out_shapes
=
list
()
out_shapes
=
[
dim
.
dim_value
for
dim
in
values
]
out_shapes
.
append
([
dim
.
dim_value
for
dim
in
values
])
return
out_shapes
@
property
def
dtype
(
self
):
dtype
=
self
.
layer
.
type
.
tensor_type
.
elem_type
return
TENSOR_TYPE_TO_NP_TYPE
[
dtype
]
class
ONNXGraph
(
Graph
):
def
__init__
(
self
,
model
):
super
(
ONNXGraph
,
self
).
__init__
(
model
)
def
__init__
(
self
,
graph
,
onnx_model
):
super
(
ONNXGraph
,
self
).
__init__
(
graph
)
self
.
onnx_model
=
onnx_model
self
.
initializer
=
{}
self
.
place_holder_nodes
=
list
()
self
.
get_place_holder_nodes
()
self
.
value_infos
=
self
.
inferred_model_value_info
(
graph
)
self
.
results_of_inference
=
dict
()
def
get_inner_nodes
(
self
):
"""
generate inner node of ONNX model
...
...
@@ -162,17 +165,22 @@ class ONNXGraph(Graph):
"""
build topo_sort of ONNX model
"""
data_node
=
self
.
place_holder_nodes
[
0
]
value_info
=
self
.
value_infos
[
data_node
]
input_shape
=
value_info
[
'shape'
]
self
.
get_results_of_inference
(
self
.
onnx_model
,
input_shape
)
for
layer
in
self
.
model
.
node
:
self
.
node_map
[
layer
.
name
]
=
ONNXGraphNode
(
layer
)
#set op node's dtype and out_shapes
for
item
in
self
.
model
.
value_info
:
if
item
.
name
in
self
.
node_map
:
self
.
node_map
[
item
.
name
].
dtype
=
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
]
self
.
node_map
[
item
.
name
].
out_shapes
=
[
dim
.
dim_value
for
dim
in
item
.
type
.
tensor_type
.
shape
.
dim
]
node
=
ONNXGraphNode
(
layer
)
self
.
node_map
[
layer
.
name
]
=
node
for
opt
in
layer
.
output
:
if
opt
in
self
.
value_infos
:
value_info
=
self
.
value_infos
[
opt
]
node
.
dtype
=
value_info
[
'dtype'
]
node
.
out_shapes
.
append
(
value_info
[
'shape'
])
else
:
_
,
dtype
,
shape
=
self
.
get_dynamic_shape
(
opt
)
node
.
dtype
=
dtype
node
.
out_shapes
.
append
(
shape
)
for
layer
in
self
.
model
.
input
:
if
layer
.
name
not
in
self
.
node_map
:
...
...
@@ -199,7 +207,6 @@ class ONNXGraph(Graph):
format
(
in_node
,
layer_name
))
else
:
self
.
connect
(
in_node
,
layer_name
)
#generate topo
super
(
ONNXGraph
,
self
).
build
()
...
...
@@ -227,31 +234,108 @@ class ONNXGraph(Graph):
weight
=
to_array
(
initializer
)
yield
name
,
weight
def
inferred_model_value_info
(
self
,
graph
):
"""
collect value/type info for an ONNX model
"""
assert
isinstance
(
graph
,
onnx
.
GraphProto
),
'model is not a ModelProto instance'
value_info
=
Dict
()
for
item
in
graph
.
value_info
:
value_info
[
item
.
name
]
=
{
'dtype'
:
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
'shape'
:
[
dim
.
dim_value
for
dim
in
item
.
type
.
tensor_type
.
shape
.
dim
],
'external'
:
False
}
for
item
in
graph
.
input
:
assert
item
.
name
not
in
value_info
value_info
[
item
.
name
]
=
{
'dtype'
:
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
'shape'
:
[
dim
.
dim_value
for
dim
in
item
.
type
.
tensor_type
.
shape
.
dim
],
'external'
:
True
}
for
item
in
graph
.
output
:
assert
item
.
name
not
in
value_info
value_info
[
item
.
name
]
=
{
'dtype'
:
TENSOR_TYPE_TO_NP_TYPE
[
item
.
type
.
tensor_type
.
elem_type
],
'shape'
:
[
dim
.
dim_value
for
dim
in
item
.
type
.
tensor_type
.
shape
.
dim
],
'external'
:
True
}
return
value_info
def
get_results_of_inference
(
self
,
model
,
shape
):
try
:
import
torch
version
=
torch
.
__version__
if
'1.1.0'
not
in
version
:
print
(
"your model have dynamic graph, torch==1.1.0 is required"
)
return
except
:
print
(
"your model have dynamic graph, we use caff2 to inference graph, please use
\"
pip install torch==1.1.0
\"
."
)
return
from
x2paddle.decoder.onnx_backend
import
prepare
np_images
=
np
.
random
.
rand
(
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]).
astype
(
'float32'
)
outputs
=
[]
for
node
in
model
.
graph
.
node
:
value_info
=
helper
.
make_tensor_value_info
(
node
.
name
,
TensorProto
.
UNDEFINED
,
[])
outputs
.
append
(
value_info
)
while
len
(
outputs
)
>
0
:
tmp_outputs
=
outputs
[:
254
]
model
.
graph
.
ClearField
(
'output'
)
model
.
graph
.
output
.
MergeFrom
(
tmp_outputs
)
prepared_backend
=
prepare
(
model
,
device
=
'CPU'
,
no_check_UNSAFE
=
True
)
res
=
prepared_backend
.
run
(
inputs
=
np_images
)
for
idx
,
info
in
enumerate
(
tmp_outputs
):
self
.
results_of_inference
[
info
.
name
]
=
res
[
idx
]
outputs
=
outputs
[
254
:]
return
def
get_dynamic_shape
(
self
,
layer
):
"""
get dynamic shape from caffe2.backend
"""
output
=
self
.
results_of_inference
[
layer
]
return
output
.
tolist
(),
output
.
dtype
,
output
.
shape
class
ONNXDecoder
(
object
):
def
__init__
(
self
,
onnx_model
):
model
=
onnx
.
load
(
onnx_model
)
print
(
'model ir_version: {}, op version: {}'
.
format
(
model
.
ir_version
,
model
.
opset_import
[
0
].
version
))
if
model
.
opset_import
[
0
].
version
<
9
:
_logger
.
warning
(
'Now, onnx2paddle main support convert onnx model opset_verison == 9,'
'opset_verison of your onnx model is %d < 9,'
'some operator may cannot convert.'
,
model
.
opset_import
[
0
].
version
)
check_model
(
model
)
model
=
polish_model
(
model
)
check_model
(
model
)
model
=
onnx
.
shape_inference
.
infer_shapes
(
model
)
model
=
self
.
optimize_model_skip_op_for_inference
(
model
)
model
=
self
.
optimize_model_strip_initializer
(
model
)
self
.
standardize_variable_name
(
model
.
graph
)
self
.
model
=
model
graph_def
=
model
.
graph
self
.
onnx_graph
=
ONNXGraph
(
graph_def
)
self
.
onnx_graph
=
ONNXGraph
(
graph_def
,
model
)
self
.
onnx_graph
.
build
()
def
build_value_refs
(
self
,
nodes
):
...
...
@@ -334,9 +418,13 @@ class ONNXDecoder(object):
output_name
,
output_refs
)
else
:
processed
=
-
1
if
processed
>
0
:
nodes_to_remove
.
append
(
node_idx
)
for
value_info
in
ret
.
graph
.
value_info
:
for
output
in
node
.
output
:
if
value_info
.
name
==
output
:
ret
.
graph
.
value_info
.
remove
(
value_info
)
print
(
'skip op {}: {} -> {} -> {}'
.
format
(
node_idx
,
input_name
,
node
.
op_type
,
output_name
))
elif
processed
==
0
:
...
...
@@ -396,7 +484,6 @@ class ONNXDecoder(object):
"""
standardize variable name for paddle's code
"""
for
initializer
in
graph
.
initializer
:
initializer
.
name
=
self
.
make_variable_name
(
initializer
.
name
)
for
ipt
in
graph
.
input
:
...
...
@@ -455,43 +542,3 @@ class ONNXDecoder(object):
raise
RuntimeError
(
"Input mismatch {} != {}"
.
format
(
len
(
onnx_model
.
input
),
len
(
model
.
input
)))
return
onnx_model
def
get_dynamic_shape_from_caffe2
(
self
,
layer
,
input_shapes
):
"""
get dynamic shape from caffe2.backend
"""
try
:
import
torch
version
=
torch
.
__version__
if
'1.1.0'
not
in
version
:
print
(
"your model have dynamic graph, torch==1.1.0 is required"
)
return
except
:
print
(
"your model have dynamic graph, we use caff2 to inference graph, please use
\"
pip install torch==1.1.0
\"
."
)
return
from
caffe2.python.onnx.backend
import
prepare
shape
=
input_shapes
[
0
]
np_images
=
np
.
random
.
rand
(
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]).
astype
(
'float32'
)
num_onnx
=
self
.
split_model
(
self
.
model
,
layer
)
prepared_backend
=
prepare
(
num_onnx
,
device
=
'CPU'
)
output
=
prepared_backend
.
run
(
inputs
=
np_images
)
return
output
[
0
].
tolist
()
def
get_dynamic_shape_from_onnx
(
self
,
layer
,
input_shapes
):
"""
get dynamic shape from onnxruntime
"""
import
onnxruntime
as
rt
from
onnxruntime.backend
import
prepare
import
numpy
as
np
num_onnx
=
self
.
split_model
(
self
.
model
,
layer
)
sess
=
prepare
(
num_onnx
)
shape
=
input_shapes
[
0
]
print
(
shape
)
np_images
=
np
.
random
.
rand
(
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]).
astype
(
'float32'
)
output
=
sess
.
run
(
model
=
sess
,
inputs
=
np_images
)
return
output
[
0
].
tolist
()
x2paddle/decoder/tf_decoder.py
浏览文件 @
e6e5dbb9
...
...
@@ -176,7 +176,7 @@ class TFGraph(Graph):
def
_remove_identity_node
(
self
):
identity_node
=
list
()
for
node_name
,
node
in
self
.
node_map
.
items
():
if
node
.
layer_type
==
"Identity"
:
if
node
.
layer_type
==
"Identity"
or
node
.
layer_type
==
"StopGradient"
:
identity_node
.
append
(
node_name
)
for
node_name
in
identity_node
:
...
...
@@ -374,3 +374,38 @@ class TFDecoder(object):
return
results
[
0
].
tolist
()
else
:
raise
Exception
(
"Couldn't infer a stable shape shape tensor value"
)
def
infer_tensor_shape
(
self
,
graph_node
):
if
hasattr
(
graph_node
,
"index"
):
tensor_name
=
graph_node
.
layer
.
name
+
":{}"
.
format
(
graph_node
.
index
)
else
:
tensor_name
=
graph_node
.
layer
.
name
+
":0"
feed
=
dict
()
batch_size
=
[
2
,
3
,
5
]
shapes
=
list
()
for
b
in
batch_size
:
for
input_name
,
info
in
self
.
input_info
.
items
():
(
shape
,
dtype
)
=
cp
.
deepcopy
(
info
)
input_tensor
=
self
.
sess
.
graph
.
get_tensor_by_name
(
input_name
+
":0"
)
if
shape
.
count
(
-
1
)
>
0
:
shape
[
shape
.
index
(
-
1
)]
=
b
feed
[
input_tensor
]
=
numpy
.
random
.
random_sample
(
shape
)
output_tensor
=
self
.
sess
.
graph
.
get_tensor_by_name
(
tensor_name
)
shape
=
self
.
sess
.
run
([
output_tensor
],
feed
)[
0
].
shape
shapes
.
append
(
numpy
.
array
(
shape
))
compare01
=
(
shapes
[
0
]
==
shapes
[
1
])
compare12
=
(
shapes
[
1
]
==
shapes
[
2
])
if
compare01
.
all
()
and
compare12
.
all
():
return
shape
[
0
].
tolist
()
if
(
compare01
==
compare12
).
all
():
index
=
numpy
.
argwhere
(
compare01
==
False
).
flatten
()
if
index
.
shape
[
0
]
!=
1
:
raise
Exception
(
"There's not only one unstable dimension"
)
if
index
[
0
]
!=
0
:
raise
Exception
(
"Batch size not in the first dimension"
)
shapes
[
0
][
0
]
=
-
1
return
shapes
[
0
].
tolist
()
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
e6e5dbb9
...
...
@@ -308,7 +308,7 @@ class CaffeOpMapper(OpMapper):
'pool_padding'
:
pad
,
'ceil_mode'
:
ceil_mode
,
'pool_type'
:
string
(
pool_type
),
'exclusive'
:
Tru
e
,
'exclusive'
:
Fals
e
,
'global_pooling'
:
global_pool
,
'name'
:
string
(
node
.
layer_name
)
}
...
...
x2paddle/op_mapper/onnx_custom_layer/InstanceNormalization.py
0 → 100644
浏览文件 @
e6e5dbb9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.register
import
register
def
InstanceNormalization_shape
(
input_shape
):
return
input_shape
def
InstanceNormalization_layer
(
inputs
,
name
=
None
):
# TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm.
epsilon
=
1e-5
mean
=
fluid
.
layers
.
reduce_mean
(
inputs
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
inputs
-
mean
),
dim
=
[
2
,
3
],
keep_dim
=
True
)
if
name
is
not
None
:
scale_name
=
name
+
"_scale"
offset_name
=
name
+
"_offset"
scale_param
=
fluid
.
ParamAttr
(
name
=
scale_name
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
True
)
offset_param
=
fluid
.
ParamAttr
(
name
=
offset_name
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
True
)
scale
=
fluid
.
layers
.
create_parameter
(
attr
=
scale_param
,
shape
=
inputs
.
shape
[
1
:
2
],
dtype
=
"float32"
)
offset
=
fluid
.
layers
.
create_parameter
(
attr
=
offset_param
,
shape
=
inputs
.
shape
[
1
:
2
],
dtype
=
"float32"
)
tmp
=
fluid
.
layers
.
elementwise_mul
(
x
=
(
inputs
-
mean
),
y
=
scale
,
axis
=
1
)
tmp
=
tmp
/
fluid
.
layers
.
sqrt
(
var
+
epsilon
)
tmp
=
fluid
.
layers
.
elementwise_add
(
tmp
,
offset
,
axis
=
1
)
return
tmp
def
InstanceNormalization_weights
(
name
,
data
=
None
):
weights_name
=
[
name
+
'_scale'
]
return
weights_name
register
(
kind
=
'InstanceNormalization'
,
shape
=
InstanceNormalization_shape
,
layer
=
InstanceNormalization_layer
,
weights
=
InstanceNormalization_weights
)
x2paddle/op_mapper/onnx_custom_layer/__init__.py
0 → 100644
浏览文件 @
e6e5dbb9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.register
import
get_registered_layers
#custom layer import begins
from
.
import
InstanceNormalization
#custom layer import ends
custom_layers
=
get_registered_layers
()
def
set_args
(
f
,
params
):
""" set args for function 'f' using the parameters in node.layer.param
Args:
f (function): a python function object
params (object): a object contains attributes needed by f's arguments
Returns:
arg_names (list): a list of argument names
kwargs (dict): a dict contains needed arguments
"""
argc
=
f
.
__code__
.
co_argcount
arg_list
=
f
.
__code__
.
co_varnames
[
0
:
argc
]
kwargs
=
{}
for
arg_name
in
arg_list
:
if
hasattr
(
params
,
arg_name
)
and
params
is
not
None
:
kwargs
[
arg_name
]
=
getattr
(
params
,
arg_name
)
return
arg_list
,
kwargs
def
has_layer
(
layer_type
):
""" test whether this layer exists in custom layer
"""
return
layer_type
in
custom_layers
def
get_params
(
layer
,
layer_type
):
import
re
if
layer_type
.
lower
()
==
"deconvolution"
or
layer_type
.
lower
(
)
==
"convolutiondepthwise"
:
param_name
=
'_'
.
join
((
'convolution'
,
'param'
))
elif
layer_type
.
lower
()
==
"normalize"
:
param_name
=
'_'
.
join
((
'norm'
,
'param'
))
elif
len
(
layer_type
)
-
len
(
re
.
sub
(
"[A-Z]"
,
""
,
layer_type
))
>=
2
:
s
=
''
tmp_name
=
''
for
i
,
ch
in
enumerate
(
layer_type
):
if
i
==
0
:
s
+=
ch
.
lower
()
continue
elif
ch
.
isupper
()
and
layer_type
[
i
-
1
].
islower
():
tmp_name
+=
(
s
+
'_'
)
s
=
''
s
+=
ch
.
lower
()
tmp_name
+=
s
param_name
=
'_'
.
join
((
tmp_name
,
'param'
))
else
:
param_name
=
'_'
.
join
((
layer_type
.
lower
(),
'param'
))
return
getattr
(
layer
,
param_name
,
None
)
def
compute_output_shape
(
node
):
""" compute the output shape of custom layer
"""
layer_type
=
node
.
layer_type
assert
layer_type
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
layer_type
)
shape_func
=
custom_layers
[
layer_type
][
'shape'
]
layer
=
node
.
layer
params
=
get_params
(
layer
,
layer_type
)
arg_names
,
kwargs
=
set_args
(
shape_func
,
params
)
input_shape
=
node
.
input_shape
return
shape_func
(
input_shape
,
**
kwargs
)
def
make_custom_layer
(
node
):
""" get the code which implement the custom layer function
"""
layer_type
=
node
.
layer_type
assert
layer_type
in
custom_layers
,
"layer[%s] not exist in custom layers"
%
(
layer_type
)
layer_func
=
custom_layers
[
layer_type
][
'layer'
]
import
inspect
return
inspect
.
getsource
(
layer_func
),
layer_func
def
deal_weights
(
node
,
data
=
None
):
""" deal the weights of the custom layer
"""
layer_type
=
node
.
layer_type
weights_func
=
custom_layers
[
layer_type
][
'weights'
]
name
=
node
.
layer_name
return
weights_func
(
name
,
data
)
x2paddle/op_mapper/onnx_custom_layer/register.py
0 → 100644
浏览文件 @
e6e5dbb9
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" this module provides 'register' for registering customized layers
"""
g_custom_layers
=
{}
def
register
(
kind
,
shape
,
layer
,
weights
):
""" register a custom layer or a list of custom layers
Args:
@kind (str or list): type name of the layer
@shape (function): a function to generate the shape of layer's output
@layer (function): a function to generate the paddle code of layer
@weights (function): a function to deal with weights data
Returns:
None
"""
assert
type
(
shape
).
__name__
==
'function'
,
'shape should be a function'
assert
type
(
layer
).
__name__
==
'function'
,
'layer should be a function'
if
type
(
kind
)
is
str
:
kind
=
[
kind
]
else
:
assert
type
(
kind
)
is
list
,
'invalid param "kind" for register, not a list or str'
for
k
in
kind
:
assert
type
(
k
)
is
str
,
'invalid param "kind" for register, not a list of str'
assert
k
not
in
g_custom_layers
,
'this type[%s] has already been registered'
%
(
k
)
print
(
'register layer[%s]'
%
(
k
))
g_custom_layers
[
k
]
=
{
'shape'
:
shape
,
'layer'
:
layer
,
'weights'
:
weights
}
def
get_registered_layers
():
return
g_custom_layers
x2paddle/op_mapper/onnx_directly_map.py
浏览文件 @
e6e5dbb9
...
...
@@ -24,6 +24,7 @@ default_op_mapping_field_values['DEFAULTS'] = dict()
default_op_mapping_field_values
[
'INPUT_PERM'
]
=
None
default_op_mapping_field_values
[
'OUTPUT_PERM'
]
=
None
default_op_mapping_field_values
[
'FILL_NAME_FIELD'
]
=
True
default_op_mapping
=
{
'Gather'
:
[
'gather'
,
[
'X'
],
[
'Out'
],
dict
(
axis
=
''
)],
...
...
@@ -46,8 +47,44 @@ default_op_mapping = {
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
'ReduceSum'
:
[
'reduce_sum'
,
[
'X'
],
[
'Out'
],
dict
(
axes
=
'dim'
,
keepdims
=
'keep_dim'
),
dict
(
keep_dim
=
1
)
],
#active function
'Relu'
:
[
'relu'
,
[
'X'
],
[
'Out'
]],
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
.
01
)],
'Elu'
:
[
'elu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
1.
)],
'ThresholdedRelu'
:
[
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'threshold'
),
dict
(
alpha
=
1.
)
],
'Tanh'
:
[
'tanh'
,
[
'X'
],
[
'Out'
]],
'Sigmoid'
:
[
'sigmoid'
,
[
'X'
],
[
'Out'
]],
'Pow'
:
[
'elementwise_pow'
,
[
'X'
,
'Y'
],
[
'Out'
],
dict
(),
dict
(
axis
=-
1
)],
# TODO: pow for scalar exponent
'HardSigmoid'
:
[
'hard_sigmoid'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'slope'
,
beta
=
'offset'
),
dict
(
slope
=
.
2
,
offset
=
.
5
)
],
'Softsign'
:
[
'softsign'
,
[
'X'
],
[
'Out'
]],
'Softplus'
:
[
'softplus'
,
[
'X'
],
[
'Out'
]],
'Exp'
:
[
'exp'
,
[
'X'
],
[
'Out'
]],
'Softmax'
:
[
'softmax'
,
[
'X'
],
[
'Out'
],
dict
(
axis
=
''
),
dict
(
axis
=
1
)],
}
activefunc_op_mapping
=
{
'LeakyRelu'
:
[
'leaky_relu'
,
[
'X'
],
[
'Out'
],
dict
(),
dict
(
alpha
=
.
01
)]
dict
(),
dict
(
alpha
=
.
01
)]
,
}
default_ioa_constraint
=
{
...
...
x2paddle/op_mapper/onnx_op_mapper.py
浏览文件 @
e6e5dbb9
此差异已折叠。
点击以展开。
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
e6e5dbb9
...
...
@@ -58,6 +58,7 @@ class TFOpMapper(OpMapper):
'Exp'
:
[
'exp'
],
'Rsqrt'
:
[
'rsqrt'
],
'swish_f32'
:
[
'swish'
],
'Tanh'
:
[
'tanh'
],
'LeakyRelu'
:
[
'leaky_relu'
,
{
'alpha'
:
'alpha'
}]
...
...
@@ -188,6 +189,10 @@ class TFOpMapper(OpMapper):
if
y_shape
[
index
]
!=
x_shape
[
index
]:
is_sub_seq
=
False
if
not
is_sub_seq
:
if
x_shape
.
count
(
-
1
)
>
2
:
x_shape
=
self
.
decoder
.
infer_tensor_shape
(
x_input
)
if
y_shape
.
count
(
-
1
)
>
2
:
y_shape
=
self
.
decoder
.
infer_tensor_shape
(
y_input
)
x_expand_times
=
[
1
]
*
len
(
x_shape
)
y_expand_times
=
[
1
]
*
len
(
y_shape
)
x_need_expand
=
False
...
...
@@ -913,6 +918,12 @@ class TFOpMapper(OpMapper):
self
.
add_omit_nodes
(
kernel
.
layer_name
,
node
.
layer_name
)
self
.
add_omit_nodes
(
out_shape
.
layer_name
,
node
.
layer_name
)
if
out_shape
.
layer_type
==
"Const"
:
out_shape
=
out_shape
.
value
.
tolist
()
else
:
out_shape
=
self
.
decoder
.
infer_shape_tensor
(
out_shape
,
node
.
out_shapes
[
0
])
in_shape
=
input
.
out_shapes
[
0
]
if
in_shape
.
count
(
-
1
)
>
2
:
in_shape
=
self
.
decoder
.
infer_tensor
(
input
).
shape
...
...
@@ -920,7 +931,7 @@ class TFOpMapper(OpMapper):
if
k_size
.
count
(
-
1
)
>
2
:
k_size
=
self
.
decoder
.
infer_tensor
(
kernel
).
shape
pad_mode
=
node
.
get_attr
(
"padding"
)
pad_mode
=
node
.
get_attr
(
"padding"
)
.
decode
()
strides
=
node
.
get_attr
(
"strides"
)
dilations
=
node
.
get_attr
(
"dilations"
)
data_format
=
node
.
get_attr
(
"data_format"
).
decode
()
...
...
@@ -963,6 +974,22 @@ class TFOpMapper(OpMapper):
output
=
node
,
param_attr
=
attr
)
if
pad_mode
==
"SAME"
:
if
node
.
tf_data_format
==
"NHWC"
:
out_shape
=
[
out_shape
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
for
i
in
range
(
4
):
if
out_shape
[
i
]
<
0
:
out_shape
[
i
]
=
999999
attr
=
{
"axes"
:
[
0
,
1
,
2
,
3
],
"starts"
:
[
0
,
0
,
0
,
0
],
"ends"
:
out_shape
}
node
.
fluid_code
.
add_layer
(
"slice"
,
inputs
=
node
,
output
=
node
,
param_attr
=
attr
)
def
Max
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
reduce_idx
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
...
...
@@ -1173,3 +1200,17 @@ class TFOpMapper(OpMapper):
inputs
=
None
,
output
=
node
,
param_attr
=
attr
)
def
SquaredDifference
(
self
,
node
):
x
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
y
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
inputs
=
{
"x"
:
x
,
"y"
:
y
}
node
.
fluid_code
.
add_layer
(
"elementwise_sub"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
inputs
=
{
"x"
:
node
,
"y"
:
node
}
node
.
fluid_code
.
add_layer
(
"elementwise_mul"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
x2paddle/optimizer/onnx_optimizer.py
浏览文件 @
e6e5dbb9
...
...
@@ -14,7 +14,6 @@
# TODO useless node remove
from
x2paddle.op_mapper.onnx_op_mapper
import
ONNXOpMapper
from
x2paddle.core.util
import
*
class
ONNXOptimizer
(
object
):
...
...
x2paddle_model_zoo.md
浏览文件 @
e6e5dbb9
目前X2Paddle支持40+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会即时跟进:)
# TensorFlow
| 模型 | 代码 |
|------|----------|
| SqueezeNet |
[
code
](
https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py
)
|
| MobileNet_V1 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
)
|
| MobileNet_V2 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
)
|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/vgg.py
)
|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v1.py
)
|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/resnet_v2.py
)
|
# Caffe
# X2Paddle模型测试库
> 目前X2Paddle支持40+的TensorFlow OP,40+的Caffe Layer,覆盖了大部分CV分类模型常用的操作。我们在如下模型列表中测试了X2Paddle的转换。
**注:**
受限于不同框架的差异,部分模型可能会存在目前无法转换的情况,如TensorFlow中包含控制流的模型,NLP模型等。对于CV常见的模型,如若您发现无法转换或转换失败,存在较大diff等问题,欢迎通过
[
ISSUE反馈
](
https://github.com/PaddlePaddle/X2Paddle/issues/new
)
的方式告知我们(模型名,代码实现或模型获取方式),我们会及时跟进:)
## TensorFlow
| 模型 | 代码 | 备注 |
|------|----------|------|
| SqueezeNet |
[
code
](
https://github.com/tensorflow/tpu/blob/master/models/official/squeezenet/squeezenet_model.py
)
|-|
| MobileNet_V1 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| MobileNet_V2 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| ShuffleNet |
[
code
](
https://github.com/TropComplique/shufflenet-v2-tensorflow
)
|-|
| mNASNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
)
|-|
| EfficientNet |
[
code
](
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
)
|-|
| Inception_V4 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_v4.py
)
|-|
| Inception_ResNet_V2 |
[
code
](
https://github.com/tensorflow/models/blob/master/research/slim/nets/inception_resnet_v2.py
)
|-|
| VGG16 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| ResNet_V1_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| ResNet_V2_101 |
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
|-|
| UNet |
[
code1
](
https://github.com/jakeret/tf_unet
)
/
[
code2
](
https://github.com/lyatdawn/Unet-Tensorflow
)
|-|
|MTCNN |
[
code
](
https://github.com/AITTSMD/MTCNN-Tensorflow
)
|-|
|YOLO-V3|
[
code
](
https://github.com/YunYang1994/tensorflow-yolov3
)
| 转换需要关闭NHWC->NCHW的优化,见
[
文档Q2
](
FAQ.md
)
|
|Inception_V4|
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
| - |
|Inception_ResNet_V2|
[
code
](
https://github.com/tensorflow/models/tree/master/research/slim/nets
)
| - |
## Caffe
| 模型 | 代码 |
|-------|--------|
...
...
@@ -29,36 +35,24 @@
| mNASNet |
[
code
](
https://github.com/LiJianfei06/MnasNet-caffe
)
|
| MTCNN |
[
code
](
https://github.com/kpzhang93/MTCNN_face_detection_alignment/tree/master/code/codes/MTCNNv1/model
)
|
# ONNX
## ONNX
**注:**
部分模型来源于PyTorch,PyTorch的转换可参考
[
pytorch_to_onnx.md
](
pytorch_to_onnx.md
)
| 模型 | 来源 | operator version|
|-------|--------|---------|
| Resnet18 |
[
torchvison.model.resnet18
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| Resnet34 |
[
torchvison.model.resnet34
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| Resnet50 |
[
torchvison.model.resnet50
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| Resnet101 |
[
torchvison.model.resnet101
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| Vgg11 |
[
torchvison.model.vgg11
](
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
)
|9|
| Vgg11_bn |
[
torchvison.model.vgg11_bn
](
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
)
|9|
| Vgg19|
[
torchvison.model.vgg19
](
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
)
|9|
| Densenet121 |
[
torchvison.model.densenet121
](
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
)
|9|
| Alexnet |
[
torchvison.model.alexnet
](
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
)
|9|
| Shufflenet |
[
onnx official
](
https://github.com/onnx/models/tree/master/vision/classification/shufflenet
)
|9|
| Inception_v2 |
[
onnx official
](
https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v2
)
|9|
| Mobilenet_v2 |
[
pytorch(personal practice)
](
https://github.com/tonylins/pytorch-mobilenet-v2
)
|9|
目前onnx2paddle主要支持onnx operator version 9;
如何将torchvison或者个人开发者写的pytroch model转换成onnx model:
```
import torch
import torchvision
#根据不同模型调整输入的shape
dummy_input = torch.randn(1, 3, 224, 224)
#预训练后的pytorch model
resnet18 = torchvision.models.resnet18(pretrained=True)
#"resnet18.onnx"为onnx model的存储路径,1.1
torch.onnx.export(resnet18, dummy_input, "resnet18.onnx",verbose=True)
| ResNet18 |
[
torchvison.model.resnet18
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| ResNet34 |
[
torchvison.model.resnet34
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| ResNet50 |
[
torchvison.model.resnet50
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| ResNet101 |
[
torchvison.model.resnet101
](
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
)
|9|
| VGG11 |
[
torchvison.model.vgg11
](
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
)
|9|
| VGG11_bn |
[
torchvison.model.vgg11_bn
](
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
)
|9|
| VGG19|
[
torchvison.model.vgg19
](
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
)
|9|
| DenseNet121 |
[
torchvison.model.densenet121
](
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
)
|9|
| AlexNet |
[
torchvison.model.alexnet
](
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
)
|9|
| ShuffleNet |
[
onnx official
](
https://github.com/onnx/models/tree/master/vision/classification/shufflenet
)
|9|
| Inception_V2 |
[
onnx official
](
https://github.com/onnx/models/tree/master/vision/classification/inception_and_googlenet/inception_v2
)
|9|
| MobileNet_V2 |
[
pytorch(personal practice)
](
https://github.com/tonylins/pytorch-mobilenet-v2
)
|9|
| mNASNet |
[
pytorch(personal practice)
](
https://github.com/rwightman/gen-efficientnet-pytorch
)
|9|
| EfficientNet |
[
pytorch(personal practice)
](
https://github.com/rwightman/gen-efficientnet-pytorch
)
|9|
| SqueezeNet |
[
onnx official
](
https://s3.amazonaws.com/download.onnx/models/opset_9/squeezenet.tar.gz
)
|9|
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录