未验证 提交 7cea42a3 编写于 作者: Q qqj1130247885 提交者: GitHub

Add Reduce_ops and HardSigmoid (#867)

* Update onnx_decoder.py

* Update opset.py

* Update opset.py

* Update opset.py

* Update onnx_decoder.py

* fix gemm and resize

* add_hardsigmoid

* add_reduce_op

* fix

* fix

* add reduceL2

* fix

* remove onnx

* remove onnx

* remove onnx

* remove onnx

* refix

* fix

* test

* retest
上级 c0ad173e
...@@ -15,9 +15,6 @@ ...@@ -15,9 +15,6 @@
from auto_scan_test import OPConvertAutoScanTest from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure from hypothesis import reproduce_failure
import hypothesis.strategies as st import hypothesis.strategies as st
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np import numpy as np
import unittest import unittest
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestHardSigmoidCovert(OPConvertAutoScanTest):
"""
ONNX op: HardSigmoid
OPset version: 7~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=2, max_value=6), min_size=2, max_size=5))
input_dtype = draw(st.sampled_from(["float32"]))
alpha = random.random()
beta = random.random()
config = {
"op_names": ["HardSigmoid"],
"test_data_shapes": [input_shape],
"test_data_types": [[input_dtype]],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {
"alpha": alpha,
"beta": beta,
}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestReduceOpsConvert(OPConvertAutoScanTest):
"""
ONNX op: Reduce Ops
OPset version: 7~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=20, max_value=30), min_size=3, max_size=5))
input_dtype = draw(st.sampled_from(["float32", "int32", "int64"]))
axes = draw(
st.lists(
st.integers(
min_value=-len(input_shape), max_value=len(input_shape) -
1),
min_size=1,
max_size=1))
keep_dim = draw(st.integers(min_value=0, max_value=1))
config = {
"op_names": ["ReduceL1", "ReduceL2"],
"test_data_shapes": [input_shape],
"test_data_types": [input_dtype],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"max_opset_version": 15,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4,
}
attrs = {
"axes": axes,
"keepdims": keep_dim,
}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()
...@@ -132,3 +132,69 @@ class OpSet7(OpSet): ...@@ -132,3 +132,69 @@ class OpSet7(OpSet):
inputs={"x": val_x.name}, inputs={"x": val_x.name},
axis=axes, axis=axes,
outputs=[node.name]) outputs=[node.name])
@print_mapping_info
def ReduceL1(self, node):
output_name = node.name
layer_outputs = [output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
keepdims = False if node.get_attr('keepdims') == 0 else True
layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
if val_x.dtype != 'float32' and val_x.dtype != 'float64':
indices_cast = val_x.name + '_cast'
mid_norm = val_x.name + '_norm'
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": val_x.name},
outputs=[indices_cast],
dtype=string('float32'))
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": indices_cast},
outputs=[mid_norm],
**layer_attrs)
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": mid_norm},
outputs=[node.name],
dtype=string(val_x.dtype))
else:
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": val_x.name},
outputs=layer_outputs,
**layer_attrs)
@print_mapping_info
def ReduceL2(self, node):
output_name = node.name
layer_outputs = [output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
keepdims = False if node.get_attr('keepdims') == 0 else True
layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
if val_x.dtype != 'float32' and val_x.dtype != 'float64':
indices_cast = val_x.name + '_cast'
mid_norm = val_x.name + '_norm'
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": val_x.name},
outputs=[indices_cast],
dtype=string('float32'))
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": indices_cast},
outputs=[mid_norm],
**layer_attrs)
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": mid_norm},
outputs=[node.name],
dtype=string(val_x.dtype))
else:
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": val_x.name},
outputs=layer_outputs,
**layer_attrs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册