未验证 提交 7cea42a3 编写于 作者: Q qqj1130247885 提交者: GitHub

Add Reduce_ops and HardSigmoid (#867)

* Update onnx_decoder.py

* Update opset.py

* Update opset.py

* Update opset.py

* Update onnx_decoder.py

* fix gemm and resize

* add_hardsigmoid

* add_reduce_op

* fix

* fix

* add reduceL2

* fix

* remove onnx

* remove onnx

* remove onnx

* remove onnx

* refix

* fix

* test

* retest
上级 c0ad173e
......@@ -15,9 +15,6 @@
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import onnx
from onnx import helper
from onnx import TensorProto
import numpy as np
import unittest
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestHardSigmoidCovert(OPConvertAutoScanTest):
"""
ONNX op: HardSigmoid
OPset version: 7~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=2, max_value=6), min_size=2, max_size=5))
input_dtype = draw(st.sampled_from(["float32"]))
alpha = random.random()
beta = random.random()
config = {
"op_names": ["HardSigmoid"],
"test_data_shapes": [input_shape],
"test_data_types": [[input_dtype]],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4
}
attrs = {
"alpha": alpha,
"beta": beta,
}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=30)
if __name__ == "__main__":
unittest.main()
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import OPConvertAutoScanTest
from hypothesis import reproduce_failure
import hypothesis.strategies as st
import numpy as np
import unittest
import random
class TestReduceOpsConvert(OPConvertAutoScanTest):
"""
ONNX op: Reduce Ops
OPset version: 7~15
"""
def sample_convert_config(self, draw):
input_shape = draw(
st.lists(
st.integers(
min_value=20, max_value=30), min_size=3, max_size=5))
input_dtype = draw(st.sampled_from(["float32", "int32", "int64"]))
axes = draw(
st.lists(
st.integers(
min_value=-len(input_shape), max_value=len(input_shape) -
1),
min_size=1,
max_size=1))
keep_dim = draw(st.integers(min_value=0, max_value=1))
config = {
"op_names": ["ReduceL1", "ReduceL2"],
"test_data_shapes": [input_shape],
"test_data_types": [input_dtype],
"inputs_shape": [input_shape],
"min_opset_version": 7,
"max_opset_version": 15,
"inputs_name": ["x"],
"outputs_name": ["y"],
"delta": 1e-4,
"rtol": 1e-4,
}
attrs = {
"axes": axes,
"keepdims": keep_dim,
}
return (config, attrs)
def test(self):
self.run_and_statis(max_examples=50)
if __name__ == "__main__":
unittest.main()
......@@ -132,3 +132,69 @@ class OpSet7(OpSet):
inputs={"x": val_x.name},
axis=axes,
outputs=[node.name])
@print_mapping_info
def ReduceL1(self, node):
output_name = node.name
layer_outputs = [output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
keepdims = False if node.get_attr('keepdims') == 0 else True
layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
if val_x.dtype != 'float32' and val_x.dtype != 'float64':
indices_cast = val_x.name + '_cast'
mid_norm = val_x.name + '_norm'
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": val_x.name},
outputs=[indices_cast],
dtype=string('float32'))
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": indices_cast},
outputs=[mid_norm],
**layer_attrs)
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": mid_norm},
outputs=[node.name],
dtype=string(val_x.dtype))
else:
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": val_x.name},
outputs=layer_outputs,
**layer_attrs)
@print_mapping_info
def ReduceL2(self, node):
output_name = node.name
layer_outputs = [output_name]
val_x = self.graph.get_input_node(node, idx=0, copy=True)
axes = node.get_attr('axes')
keepdims = False if node.get_attr('keepdims') == 0 else True
layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
if val_x.dtype != 'float32' and val_x.dtype != 'float64':
indices_cast = val_x.name + '_cast'
mid_norm = val_x.name + '_norm'
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": val_x.name},
outputs=[indices_cast],
dtype=string('float32'))
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": indices_cast},
outputs=[mid_norm],
**layer_attrs)
self.paddle_graph.add_layer(
'paddle.cast',
inputs={"x": mid_norm},
outputs=[node.name],
dtype=string(val_x.dtype))
else:
self.paddle_graph.add_layer(
"paddle.norm",
inputs={"x": val_x.name},
outputs=layer_outputs,
**layer_attrs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册