Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
4c29d6df
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4c29d6df
编写于
9月 18, 2019
作者:
J
Jason
提交者:
GitHub
9月 18, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #149 from jiangjiajun/develop
add optimization for scale
上级
a3275d80
dd9e3172
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
226 addition
and
5 deletion
+226
-5
x2paddle/convert.py
x2paddle/convert.py
+5
-2
x2paddle/optimizer/tf_optimizer.py
x2paddle/optimizer/tf_optimizer.py
+221
-3
未找到文件。
x2paddle/convert.py
浏览文件 @
4c29d6df
...
...
@@ -106,8 +106,11 @@ def tf2paddle(model_path,
# optimizer below is experimental
optimizer
.
merge_activation
()
optimizer
.
merge_bias
()
optimizer
.
merge_batch_norm
()
optimizer
.
merge_prelu
()
optimizer
.
optimize_sub_graph
()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else
:
mapper
=
TFOpMapperNHWC
(
model
)
optimizer
=
TFOptimizer
(
mapper
)
...
...
x2paddle/optimizer/tf_optimizer.py
浏览文件 @
4c29d6df
...
...
@@ -20,6 +20,15 @@ import numpy
import
copy
as
cp
def
exist_act
(
node
):
for
layer
in
node
.
fluid_code
.
layers
:
if
layer
.
param_attr
is
not
None
:
act
=
layer
.
param_attr
.
get
(
"act"
,
None
)
if
act
is
not
None
:
return
True
return
False
class
TFOptimizer
(
object
):
activation_ops
=
{
'Relu'
:
'relu'
,
...
...
@@ -353,6 +362,12 @@ class TFOptimizer(object):
node
.
fluid_code
.
layers
[
-
2
].
output
=
name
del
node
.
fluid_code
.
layers
[
-
1
]
def
optimize_sub_graph
(
self
):
self
.
merge_batch_norm
()
self
.
merge_prelu
()
self
.
merge_scale
()
self
.
merge_affine_channel
()
def
merge_batch_norm
(
self
):
for
i
,
name
in
enumerate
(
self
.
graph
.
topo_sort
):
node
=
self
.
graph
.
get_node
(
name
)
...
...
@@ -368,6 +383,10 @@ class TFOptimizer(object):
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes0
[
0
])
or
exist_act
(
in_nodes0
[
1
]):
is_batch_norm
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
...
...
@@ -382,11 +401,17 @@ class TFOptimizer(object):
if
in_nodes1
[
1
].
layer_type
!=
"Mul"
:
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes1
[
1
]):
is_batch_norm
=
False
continue
if
in_nodes2
[
0
].
layer_type
!=
"Const"
or
in_nodes2
[
1
].
layer_type
!=
"Mul"
:
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes2
[
1
]):
is_batch_norm
=
False
continue
in_nodes3
=
[
self
.
graph
.
get_node
(
in_name
)
...
...
@@ -410,6 +435,9 @@ class TFOptimizer(object):
if
in_nodes5
.
layer_type
!=
"Add"
:
is_batch_norm
=
False
continue
if
exist_act
(
in_nodes5
):
is_batch_norm
=
False
continue
in_nodes6
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes5
.
inputs
...
...
@@ -485,10 +513,9 @@ class TFOptimizer(object):
if
is_batch_norm
:
index
=
in_nodes1
[
0
].
outputs
.
index
(
in_nodes0
[
0
].
layer_name
)
del
in_nodes1
[
0
].
outputs
[
index
]
in_nodes1
[
0
].
outputs
[
index
]
=
node
.
layer_name
node
.
layer_type
=
"FusedBatchNorm"
node
.
inputs
=
[
in_nodes1
[
0
].
layer_name
]
node
.
outputs
=
node
.
outputs
act
=
node
.
fluid_code
.
layers
[
-
1
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
...
...
@@ -522,6 +549,9 @@ class TFOptimizer(object):
continue
is_prelu
=
True
if
node
.
layer_type
==
"Add"
:
if
exist_act
(
node
):
is_prelu
=
False
continue
in_nodes0
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
...
...
@@ -529,6 +559,10 @@ class TFOptimizer(object):
1
].
layer_type
!=
"Mul"
:
is_prelu
=
False
continue
if
exist_act
(
in_nodes0
[
1
]):
is_prelu
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
].
outputs
)
!=
1
:
is_prelu
=
False
...
...
@@ -546,6 +580,9 @@ class TFOptimizer(object):
if
in_nodes2
[
0
].
layer_type
!=
"Mul"
:
is_prelu
=
False
continue
if
exist_act
(
in_nodes2
[
0
]):
is_prelu
=
False
continue
if
len
(
in_nodes2
[
1
].
outputs
)
!=
1
or
len
(
in_nodes2
[
0
].
outputs
)
!=
1
:
is_prelu
=
False
...
...
@@ -559,6 +596,9 @@ class TFOptimizer(object):
1
].
layer_type
!=
"Sub"
:
is_prelu
=
False
continue
if
exist_act
(
in_nodes3
[
1
]):
is_prelu
=
False
continue
if
len
(
in_nodes3
[
0
].
outputs
)
!=
1
or
len
(
in_nodes3
[
1
].
outputs
)
!=
1
:
is_prelu
=
False
...
...
@@ -638,10 +678,10 @@ class TFOptimizer(object):
del
in_nodes1
.
outputs
[
index
]
index
=
in_nodes1
.
outputs
.
index
(
in_nodes4
[
1
].
layer_name
)
del
in_nodes1
.
outputs
[
index
]
in_nodes1
.
outputs
.
append
(
node
.
layer_name
)
node
.
layer_type
=
"Prelu"
node
.
inputs
=
[
in_nodes1
.
layer_name
]
node
.
outputs
=
node
.
outputs
act
=
node
.
fluid_code
.
layers
[
-
1
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
...
...
@@ -660,3 +700,181 @@ class TFOptimizer(object):
del
self
.
graph
.
node_map
[
in_nodes2
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes3
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes4
[
1
].
layer_name
]
def
merge_scale
(
self
):
for
i
,
name
in
enumerate
(
self
.
graph
.
topo_sort
):
node
=
self
.
graph
.
get_node
(
name
)
if
node
is
None
:
continue
is_scale
=
True
if
node
.
layer_type
==
"Sub"
:
in_nodes0
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
if
in_nodes0
[
0
].
layer_type
!=
"Mul"
or
in_nodes0
[
1
].
layer_type
!=
"Const"
or
in_nodes0
[
1
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
exist_act
(
in_nodes0
[
0
]):
is_scale
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
].
outputs
)
!=
1
:
is_scale
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
]
if
in_nodes1
[
0
].
layer_type
!=
"Const"
or
in_nodes1
[
1
].
layer_type
!=
"RealDiv"
or
in_nodes1
[
0
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
exist_act
(
in_nodes1
[
1
]):
is_scale
=
False
continue
if
len
(
in_nodes1
[
0
].
outputs
)
!=
1
or
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
is_scale
=
False
continue
in_nodes2
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes1
[
1
].
inputs
]
if
in_nodes2
[
1
].
layer_type
!=
"Const"
or
in_nodes2
[
1
].
value
.
size
!=
1
:
is_scale
=
False
continue
if
is_scale
:
in_node
=
self
.
graph
.
get_node
(
in_nodes1
[
1
].
inputs
[
0
])
index
=
in_node
.
outputs
.
index
(
in_nodes1
[
1
].
layer_name
)
in_node
.
outputs
[
index
]
=
node
.
layer_name
node
.
layer_type
=
"Scale"
node
.
inputs
=
[
in_node
.
layer_name
]
scale
=
1.0
/
in_nodes2
[
1
].
value
*
in_nodes1
[
0
].
value
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
"scale"
:
scale
,
"bias"
:
in_nodes0
[
1
].
value
,
"bias_after_scale"
:
True
,
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"scale"
,
inputs
=
in_node
,
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes1
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes1
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes2
[
1
].
layer_name
]
def
merge_affine_channel
(
self
):
for
i
,
name
in
enumerate
(
self
.
graph
.
topo_sort
):
node
=
self
.
graph
.
get_node
(
name
)
if
node
is
None
:
continue
is_affine_channel
=
True
if
node
.
layer_type
==
"RealDiv"
:
in_nodes0
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
node
.
inputs
]
bias_add
=
True
if
(
in_nodes0
[
0
].
layer_type
!=
"Sub"
and
in_nodes0
[
0
].
layer_type
!=
"Add"
)
or
in_nodes0
[
1
].
layer_type
!=
"Const"
or
len
(
in_nodes0
[
1
].
value
.
shape
)
!=
3
:
is_affine_channel
=
False
continue
if
in_nodes0
[
0
].
layer_type
==
"Sub"
:
bias_add
=
False
if
exist_act
(
in_nodes0
[
0
]):
is_affine_channel
=
False
continue
if
len
(
in_nodes0
[
0
].
outputs
)
!=
1
or
len
(
in_nodes0
[
1
].
outputs
)
!=
1
:
is_affine_channel
=
False
continue
in_nodes1
=
[
self
.
graph
.
get_node
(
in_name
)
for
in_name
in
in_nodes0
[
0
].
inputs
]
if
len
(
in_nodes1
[
0
].
out_shapes
[
0
]
)
!=
4
or
in_nodes1
[
1
].
layer_type
!=
"Const"
or
len
(
in_nodes1
[
1
].
value
.
shape
)
!=
3
:
is_affine_channel
=
False
continue
if
len
(
in_nodes1
[
1
].
outputs
)
!=
1
:
is_affine_channel
=
False
continue
channel
=
in_nodes1
[
0
].
out_shapes
[
0
][
-
1
]
if
channel
<
0
or
channel
!=
in_nodes0
[
1
].
value
.
size
or
channel
!=
in_nodes1
[
1
].
value
.
size
:
is_affine_channel
=
False
continue
if
in_nodes0
[
1
].
out_shapes
[
0
][
-
1
]
!=
in_nodes0
[
1
].
value
.
size
or
in_nodes1
[
1
].
out_shapes
[
0
][
-
1
]
!=
in_nodes1
[
1
].
value
.
size
:
is_affine_channel
=
False
continue
if
is_affine_channel
:
in_node
=
in_nodes1
[
0
]
index
=
in_node
.
outputs
.
index
(
in_nodes0
[
0
].
layer_name
)
in_node
.
outputs
[
index
]
=
node
.
layer_name
node
.
layer_type
=
"AffineChannel"
node
.
inputs
=
[
in_node
.
layer_name
]
scale
=
1.0
/
in_nodes0
[
1
].
value
.
flatten
()
bias
=
in_nodes1
[
1
].
value
.
flatten
(
)
/
in_nodes0
[
1
].
value
.
flatten
()
if
not
bias_add
:
bias
*=
-
1.0
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_scale"
]
=
scale
self
.
op_mapper
.
weights
[
node
.
layer_name
+
"_bias"
]
=
bias
act
=
None
if
node
.
fluid_code
.
layers
[
0
].
param_attr
is
not
None
:
act
=
node
.
fluid_code
.
layers
[
0
].
param_attr
.
get
(
"act"
,
None
)
node
.
fluid_code
.
clear
()
attr
=
{
"dtype"
:
string
(
scale
.
dtype
),
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_scale"
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_scale"
,
param_attr
=
attr
)
attr
=
{
"dtype"
:
string
(
scale
.
dtype
),
"shape"
:
[
channel
],
"name"
:
string
(
node
.
layer_name
+
"_bias"
)
}
node
.
fluid_code
.
add_layer
(
"create_parameter"
,
inputs
=
None
,
output
=
node
.
layer_name
+
"_bias"
,
param_attr
=
attr
)
inputs
=
{
"x"
:
in_node
,
"scale"
:
node
.
layer_name
+
"_scale"
,
"bias"
:
node
.
layer_name
+
"_bias"
}
attr
=
{
"act"
:
act
}
node
.
fluid_code
.
add_layer
(
"affine_channel"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
attr
)
del
self
.
graph
.
node_map
[
in_nodes0
[
0
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes0
[
1
].
layer_name
]
del
self
.
graph
.
node_map
[
in_nodes1
[
1
].
layer_name
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录