未验证 提交 4c29d6df 编写于 作者: J Jason 提交者: GitHub

Merge pull request #149 from jiangjiajun/develop

add optimization for scale
......@@ -106,8 +106,11 @@ def tf2paddle(model_path,
# optimizer below is experimental
optimizer.merge_activation()
optimizer.merge_bias()
optimizer.merge_batch_norm()
optimizer.merge_prelu()
optimizer.optimize_sub_graph()
# optimizer.merge_batch_norm()
# optimizer.merge_prelu()
else:
mapper = TFOpMapperNHWC(model)
optimizer = TFOptimizer(mapper)
......
......@@ -20,6 +20,15 @@ import numpy
import copy as cp
def exist_act(node):
for layer in node.fluid_code.layers:
if layer.param_attr is not None:
act = layer.param_attr.get("act", None)
if act is not None:
return True
return False
class TFOptimizer(object):
activation_ops = {
'Relu': 'relu',
......@@ -353,6 +362,12 @@ class TFOptimizer(object):
node.fluid_code.layers[-2].output = name
del node.fluid_code.layers[-1]
def optimize_sub_graph(self):
self.merge_batch_norm()
self.merge_prelu()
self.merge_scale()
self.merge_affine_channel()
def merge_batch_norm(self):
for i, name in enumerate(self.graph.topo_sort):
node = self.graph.get_node(name)
......@@ -368,6 +383,10 @@ class TFOptimizer(object):
is_batch_norm = False
continue
if exist_act(in_nodes0[0]) or exist_act(in_nodes0[1]):
is_batch_norm = False
continue
in_nodes1 = [
self.graph.get_node(in_name)
for in_name in in_nodes0[0].inputs
......@@ -382,11 +401,17 @@ class TFOptimizer(object):
if in_nodes1[1].layer_type != "Mul":
is_batch_norm = False
continue
if exist_act(in_nodes1[1]):
is_batch_norm = False
continue
if in_nodes2[0].layer_type != "Const" or in_nodes2[
1].layer_type != "Mul":
is_batch_norm = False
continue
if exist_act(in_nodes2[1]):
is_batch_norm = False
continue
in_nodes3 = [
self.graph.get_node(in_name)
......@@ -410,6 +435,9 @@ class TFOptimizer(object):
if in_nodes5.layer_type != "Add":
is_batch_norm = False
continue
if exist_act(in_nodes5):
is_batch_norm = False
continue
in_nodes6 = [
self.graph.get_node(in_name) for in_name in in_nodes5.inputs
......@@ -485,10 +513,9 @@ class TFOptimizer(object):
if is_batch_norm:
index = in_nodes1[0].outputs.index(in_nodes0[0].layer_name)
del in_nodes1[0].outputs[index]
in_nodes1[0].outputs[index] = node.layer_name
node.layer_type = "FusedBatchNorm"
node.inputs = [in_nodes1[0].layer_name]
node.outputs = node.outputs
act = node.fluid_code.layers[-1].param_attr.get("act", None)
node.fluid_code.clear()
attr = {
......@@ -522,6 +549,9 @@ class TFOptimizer(object):
continue
is_prelu = True
if node.layer_type == "Add":
if exist_act(node):
is_prelu = False
continue
in_nodes0 = [
self.graph.get_node(in_name) for in_name in node.inputs
]
......@@ -529,6 +559,10 @@ class TFOptimizer(object):
1].layer_type != "Mul":
is_prelu = False
continue
if exist_act(in_nodes0[1]):
is_prelu = False
continue
if len(in_nodes0[0].outputs) != 1 or len(
in_nodes0[1].outputs) != 1:
is_prelu = False
......@@ -546,6 +580,9 @@ class TFOptimizer(object):
if in_nodes2[0].layer_type != "Mul":
is_prelu = False
continue
if exist_act(in_nodes2[0]):
is_prelu = False
continue
if len(in_nodes2[1].outputs) != 1 or len(
in_nodes2[0].outputs) != 1:
is_prelu = False
......@@ -559,6 +596,9 @@ class TFOptimizer(object):
1].layer_type != "Sub":
is_prelu = False
continue
if exist_act(in_nodes3[1]):
is_prelu = False
continue
if len(in_nodes3[0].outputs) != 1 or len(
in_nodes3[1].outputs) != 1:
is_prelu = False
......@@ -638,10 +678,10 @@ class TFOptimizer(object):
del in_nodes1.outputs[index]
index = in_nodes1.outputs.index(in_nodes4[1].layer_name)
del in_nodes1.outputs[index]
in_nodes1.outputs.append(node.layer_name)
node.layer_type = "Prelu"
node.inputs = [in_nodes1.layer_name]
node.outputs = node.outputs
act = node.fluid_code.layers[-1].param_attr.get("act", None)
node.fluid_code.clear()
attr = {
......@@ -660,3 +700,181 @@ class TFOptimizer(object):
del self.graph.node_map[in_nodes2[1].layer_name]
del self.graph.node_map[in_nodes3[1].layer_name]
del self.graph.node_map[in_nodes4[1].layer_name]
def merge_scale(self):
for i, name in enumerate(self.graph.topo_sort):
node = self.graph.get_node(name)
if node is None:
continue
is_scale = True
if node.layer_type == "Sub":
in_nodes0 = [
self.graph.get_node(in_name) for in_name in node.inputs
]
if in_nodes0[0].layer_type != "Mul" or in_nodes0[
1].layer_type != "Const" or in_nodes0[1].value.size != 1:
is_scale = False
continue
if exist_act(in_nodes0[0]):
is_scale = False
continue
if len(in_nodes0[0].outputs) != 1 or len(
in_nodes0[1].outputs) != 1:
is_scale = False
continue
in_nodes1 = [
self.graph.get_node(in_name)
for in_name in in_nodes0[0].inputs
]
if in_nodes1[0].layer_type != "Const" or in_nodes1[
1].layer_type != "RealDiv" or in_nodes1[
0].value.size != 1:
is_scale = False
continue
if exist_act(in_nodes1[1]):
is_scale = False
continue
if len(in_nodes1[0].outputs) != 1 or len(
in_nodes1[1].outputs) != 1:
is_scale = False
continue
in_nodes2 = [
self.graph.get_node(in_name)
for in_name in in_nodes1[1].inputs
]
if in_nodes2[1].layer_type != "Const" or in_nodes2[
1].value.size != 1:
is_scale = False
continue
if is_scale:
in_node = self.graph.get_node(in_nodes1[1].inputs[0])
index = in_node.outputs.index(in_nodes1[1].layer_name)
in_node.outputs[index] = node.layer_name
node.layer_type = "Scale"
node.inputs = [in_node.layer_name]
scale = 1.0 / in_nodes2[1].value * in_nodes1[0].value
act = None
if node.fluid_code.layers[0].param_attr is not None:
act = node.fluid_code.layers[0].param_attr.get(
"act", None)
node.fluid_code.clear()
attr = {
"scale": scale,
"bias": in_nodes0[1].value,
"bias_after_scale": True,
"act": act
}
node.fluid_code.add_layer("scale",
inputs=in_node,
output=node,
param_attr=attr)
del self.graph.node_map[in_nodes0[0].layer_name]
del self.graph.node_map[in_nodes0[1].layer_name]
del self.graph.node_map[in_nodes1[0].layer_name]
del self.graph.node_map[in_nodes1[1].layer_name]
del self.graph.node_map[in_nodes2[1].layer_name]
def merge_affine_channel(self):
for i, name in enumerate(self.graph.topo_sort):
node = self.graph.get_node(name)
if node is None:
continue
is_affine_channel = True
if node.layer_type == "RealDiv":
in_nodes0 = [
self.graph.get_node(in_name) for in_name in node.inputs
]
bias_add = True
if (in_nodes0[0].layer_type != "Sub" and in_nodes0[0].layer_type
!= "Add") or in_nodes0[1].layer_type != "Const" or len(
in_nodes0[1].value.shape) != 3:
is_affine_channel = False
continue
if in_nodes0[0].layer_type == "Sub":
bias_add = False
if exist_act(in_nodes0[0]):
is_affine_channel = False
continue
if len(in_nodes0[0].outputs) != 1 or len(
in_nodes0[1].outputs) != 1:
is_affine_channel = False
continue
in_nodes1 = [
self.graph.get_node(in_name)
for in_name in in_nodes0[0].inputs
]
if len(in_nodes1[0].out_shapes[0]
) != 4 or in_nodes1[1].layer_type != "Const" or len(
in_nodes1[1].value.shape) != 3:
is_affine_channel = False
continue
if len(in_nodes1[1].outputs) != 1:
is_affine_channel = False
continue
channel = in_nodes1[0].out_shapes[0][-1]
if channel < 0 or channel != in_nodes0[
1].value.size or channel != in_nodes1[1].value.size:
is_affine_channel = False
continue
if in_nodes0[1].out_shapes[0][-1] != in_nodes0[
1].value.size or in_nodes1[1].out_shapes[0][
-1] != in_nodes1[1].value.size:
is_affine_channel = False
continue
if is_affine_channel:
in_node = in_nodes1[0]
index = in_node.outputs.index(in_nodes0[0].layer_name)
in_node.outputs[index] = node.layer_name
node.layer_type = "AffineChannel"
node.inputs = [in_node.layer_name]
scale = 1.0 / in_nodes0[1].value.flatten()
bias = in_nodes1[1].value.flatten(
) / in_nodes0[1].value.flatten()
if not bias_add:
bias *= -1.0
self.op_mapper.weights[node.layer_name + "_scale"] = scale
self.op_mapper.weights[node.layer_name + "_bias"] = bias
act = None
if node.fluid_code.layers[0].param_attr is not None:
act = node.fluid_code.layers[0].param_attr.get(
"act", None)
node.fluid_code.clear()
attr = {
"dtype": string(scale.dtype),
"shape": [channel],
"name": string(node.layer_name + "_scale")
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node.layer_name + "_scale",
param_attr=attr)
attr = {
"dtype": string(scale.dtype),
"shape": [channel],
"name": string(node.layer_name + "_bias")
}
node.fluid_code.add_layer("create_parameter",
inputs=None,
output=node.layer_name + "_bias",
param_attr=attr)
inputs = {
"x": in_node,
"scale": node.layer_name + "_scale",
"bias": node.layer_name + "_bias"
}
attr = {"act": act}
node.fluid_code.add_layer("affine_channel",
inputs=inputs,
output=node,
param_attr=attr)
del self.graph.node_map[in_nodes0[0].layer_name]
del self.graph.node_map[in_nodes0[1].layer_name]
del self.graph.node_map[in_nodes1[1].layer_name]
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部