Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
30be2502
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
大约 1 年 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
30be2502
编写于
4月 03, 2019
作者:
M
Macrobull
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add UNet and YoloV2 samples
上级
63ac4c2c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
479 addition
and
1 deletion
+479
-1
onnx2fluid/examples/gen_unet.py
onnx2fluid/examples/gen_unet.py
+142
-0
onnx2fluid/examples/gen_yolov2.py
onnx2fluid/examples/gen_yolov2.py
+297
-0
onnx2fluid/onnx2fluid/symbolic.py
onnx2fluid/onnx2fluid/symbolic.py
+40
-1
未找到文件。
onnx2fluid/examples/gen_unet.py
0 → 100644
浏览文件 @
30be2502
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019
@author: Macrobull
Not all ops in this file are supported by both Pytorch and ONNX
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle fluid
"""
from
__future__
import
print_function
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
onnx2fluid.torch_export_helper
import
export_onnx_with_validation
# from https://github.com/milesial/Pytorch-UNet
class
double_conv
(
nn
.
Module
):
'''(conv => BN => ReLU) * 2'''
def
__init__
(
self
,
in_ch
,
out_ch
):
super
(
double_conv
,
self
).
__init__
()
self
.
conv
=
nn
.
Sequential
(
nn
.
Conv2d
(
in_ch
,
out_ch
,
3
,
padding
=
1
),
nn
.
BatchNorm2d
(
out_ch
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
Conv2d
(
out_ch
,
out_ch
,
3
,
padding
=
1
),
nn
.
BatchNorm2d
(
out_ch
),
nn
.
ReLU
(
inplace
=
True
))
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
return
x
class
inconv
(
nn
.
Module
):
def
__init__
(
self
,
in_ch
,
out_ch
):
super
(
inconv
,
self
).
__init__
()
self
.
conv
=
double_conv
(
in_ch
,
out_ch
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
return
x
class
down
(
nn
.
Module
):
def
__init__
(
self
,
in_ch
,
out_ch
):
super
(
down
,
self
).
__init__
()
self
.
mpconv
=
nn
.
Sequential
(
nn
.
MaxPool2d
(
2
),
double_conv
(
in_ch
,
out_ch
))
def
forward
(
self
,
x
):
x
=
self
.
mpconv
(
x
)
return
x
class
up
(
nn
.
Module
):
def
__init__
(
self
,
in_ch
,
out_ch
,
bilinear
=
True
):
super
(
up
,
self
).
__init__
()
# would be a nice idea if the upsampling could be learned too,
# but my machine do not have enough memory to handle all those weights
if
bilinear
:
self
.
up
=
nn
.
Upsample
(
scale_factor
=
2
,
mode
=
'bilinear'
)
#, align_corners=True)
else
:
self
.
up
=
nn
.
ConvTranspose2d
(
in_ch
//
2
,
in_ch
//
2
,
2
,
stride
=
2
)
self
.
conv
=
double_conv
(
in_ch
,
out_ch
)
def
forward
(
self
,
x1
,
x2
):
x1
=
self
.
up
(
x1
)
# input is CHW
if
hasattr
(
self
,
'diffY'
):
diffY
=
self
.
diffY
diffX
=
self
.
diffX
else
:
diffY
=
self
.
diffY
=
x2
.
size
()[
2
]
-
x1
.
size
()[
2
]
diffX
=
self
.
diffX
=
x2
.
size
()[
3
]
-
x1
.
size
()[
3
]
x1
=
F
.
pad
(
x1
,
(
diffX
//
2
,
diffX
-
diffX
//
2
,
diffY
//
2
,
diffY
-
diffY
//
2
))
# for padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x
=
torch
.
cat
([
x2
,
x1
],
dim
=
1
)
x
=
self
.
conv
(
x
)
return
x
class
outconv
(
nn
.
Module
):
def
__init__
(
self
,
in_ch
,
out_ch
):
super
(
outconv
,
self
).
__init__
()
self
.
conv
=
nn
.
Conv2d
(
in_ch
,
out_ch
,
1
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
return
x
class
UNet
(
nn
.
Module
):
def
__init__
(
self
,
n_channels
,
n_classes
):
super
(
UNet
,
self
).
__init__
()
self
.
inc
=
inconv
(
n_channels
,
64
)
self
.
down1
=
down
(
64
,
128
)
self
.
down2
=
down
(
128
,
256
)
self
.
down3
=
down
(
256
,
512
)
self
.
down4
=
down
(
512
,
512
)
self
.
up1
=
up
(
1024
,
256
)
self
.
up2
=
up
(
512
,
128
)
self
.
up3
=
up
(
256
,
64
)
self
.
up4
=
up
(
128
,
64
)
self
.
outc
=
outconv
(
64
,
n_classes
)
def
forward
(
self
,
x
):
x1
=
self
.
inc
(
x
)
x2
=
self
.
down1
(
x1
)
x3
=
self
.
down2
(
x2
)
x4
=
self
.
down3
(
x3
)
x5
=
self
.
down4
(
x4
)
x
=
self
.
up1
(
x5
,
x4
)
x
=
self
.
up2
(
x
,
x3
)
x
=
self
.
up3
(
x
,
x2
)
x
=
self
.
up4
(
x
,
x1
)
x
=
self
.
outc
(
x
)
return
F
.
sigmoid
(
x
)
model
=
UNet
(
3
,
80
)
model
.
eval
()
xb
=
torch
.
rand
((
1
,
3
,
512
,
512
))
yp
=
model
(
xb
)
export_onnx_with_validation
(
model
,
(
xb
,
),
'sample_unet'
,
[
'image'
],
[
'pred'
],
verbose
=
True
,
training
=
False
)
onnx2fluid/examples/gen_yolov2.py
0 → 100644
浏览文件 @
30be2502
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019
@author: Macrobull
Not all ops in this file are supported by both Pytorch and ONNX
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle fluid
"""
from
__future__
import
print_function
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
onnx2fluid.torch_export_helper
import
export_onnx_with_validation
# from https://github.com/santoshgsk/yolov2-pytorch/blob/master/yolotorch.ipynb
class
Yolov2
(
nn
.
Module
):
def
__init__
(
self
):
super
(
Yolov2
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
in_channels
=
3
,
out_channels
=
32
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm1
=
nn
.
BatchNorm2d
(
32
)
self
.
conv2
=
nn
.
Conv2d
(
in_channels
=
32
,
out_channels
=
64
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm2
=
nn
.
BatchNorm2d
(
64
)
self
.
conv3
=
nn
.
Conv2d
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm3
=
nn
.
BatchNorm2d
(
128
)
self
.
conv4
=
nn
.
Conv2d
(
in_channels
=
128
,
out_channels
=
64
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias
=
False
)
self
.
batchnorm4
=
nn
.
BatchNorm2d
(
64
)
self
.
conv5
=
nn
.
Conv2d
(
in_channels
=
64
,
out_channels
=
128
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm5
=
nn
.
BatchNorm2d
(
128
)
self
.
conv6
=
nn
.
Conv2d
(
in_channels
=
128
,
out_channels
=
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm6
=
nn
.
BatchNorm2d
(
256
)
self
.
conv7
=
nn
.
Conv2d
(
in_channels
=
256
,
out_channels
=
128
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias
=
False
)
self
.
batchnorm7
=
nn
.
BatchNorm2d
(
128
)
self
.
conv8
=
nn
.
Conv2d
(
in_channels
=
128
,
out_channels
=
256
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm8
=
nn
.
BatchNorm2d
(
256
)
self
.
conv9
=
nn
.
Conv2d
(
in_channels
=
256
,
out_channels
=
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm9
=
nn
.
BatchNorm2d
(
512
)
self
.
conv10
=
nn
.
Conv2d
(
in_channels
=
512
,
out_channels
=
256
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias
=
False
)
self
.
batchnorm10
=
nn
.
BatchNorm2d
(
256
)
self
.
conv11
=
nn
.
Conv2d
(
in_channels
=
256
,
out_channels
=
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm11
=
nn
.
BatchNorm2d
(
512
)
self
.
conv12
=
nn
.
Conv2d
(
in_channels
=
512
,
out_channels
=
256
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias
=
False
)
self
.
batchnorm12
=
nn
.
BatchNorm2d
(
256
)
self
.
conv13
=
nn
.
Conv2d
(
in_channels
=
256
,
out_channels
=
512
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm13
=
nn
.
BatchNorm2d
(
512
)
self
.
conv14
=
nn
.
Conv2d
(
in_channels
=
512
,
out_channels
=
1024
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm14
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv15
=
nn
.
Conv2d
(
in_channels
=
1024
,
out_channels
=
512
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias
=
False
)
self
.
batchnorm15
=
nn
.
BatchNorm2d
(
512
)
self
.
conv16
=
nn
.
Conv2d
(
in_channels
=
512
,
out_channels
=
1024
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm16
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv17
=
nn
.
Conv2d
(
in_channels
=
1024
,
out_channels
=
512
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
bias
=
False
)
self
.
batchnorm17
=
nn
.
BatchNorm2d
(
512
)
self
.
conv18
=
nn
.
Conv2d
(
in_channels
=
512
,
out_channels
=
1024
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm18
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv19
=
nn
.
Conv2d
(
in_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm19
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv20
=
nn
.
Conv2d
(
in_channels
=
1024
,
out_channels
=
1024
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm20
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv21
=
nn
.
Conv2d
(
in_channels
=
3072
,
out_channels
=
1024
,
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
bias
=
False
)
self
.
batchnorm21
=
nn
.
BatchNorm2d
(
1024
)
self
.
conv22
=
nn
.
Conv2d
(
in_channels
=
1024
,
out_channels
=
125
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
def
reorg_layer
(
self
,
x
):
stride
=
2
if
hasattr
(
self
,
'batch_size'
):
batch_size
,
channels
,
height
,
width
=
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
new_ht
=
self
.
new_ht
new_wd
=
self
.
new_wd
new_channels
=
self
.
new_channels
else
:
batch_size
,
channels
,
height
,
width
=
self
.
batch_size
,
self
.
channels
,
self
.
height
,
self
.
width
=
x
.
size
(
)
new_ht
=
self
.
new_ht
=
height
//
stride
new_wd
=
self
.
new_wd
=
width
//
stride
new_channels
=
self
.
new_channels
=
channels
*
stride
*
stride
passthrough
=
x
.
permute
(
0
,
2
,
3
,
1
)
passthrough
=
passthrough
.
contiguous
().
view
(
-
1
,
new_ht
,
stride
,
new_wd
,
stride
,
channels
)
passthrough
=
passthrough
.
permute
(
0
,
1
,
3
,
2
,
4
,
5
)
passthrough
=
passthrough
.
contiguous
().
view
(
-
1
,
new_ht
,
new_wd
,
new_channels
)
passthrough
=
passthrough
.
permute
(
0
,
3
,
1
,
2
)
return
passthrough
def
forward
(
self
,
x
):
out
=
F
.
max_pool2d
(
F
.
leaky_relu
(
self
.
batchnorm1
(
self
.
conv1
(
x
)),
negative_slope
=
0.1
),
2
,
stride
=
2
)
out
=
F
.
max_pool2d
(
F
.
leaky_relu
(
self
.
batchnorm2
(
self
.
conv2
(
out
)),
negative_slope
=
0.1
),
2
,
stride
=
2
)
out
=
F
.
leaky_relu
(
self
.
batchnorm3
(
self
.
conv3
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm4
(
self
.
conv4
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm5
(
self
.
conv5
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
leaky_relu
(
self
.
batchnorm6
(
self
.
conv6
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm7
(
self
.
conv7
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm8
(
self
.
conv8
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
leaky_relu
(
self
.
batchnorm9
(
self
.
conv9
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm10
(
self
.
conv10
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm11
(
self
.
conv11
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm12
(
self
.
conv12
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm13
(
self
.
conv13
(
out
)),
negative_slope
=
0.1
)
passthrough
=
self
.
reorg_layer
(
out
)
out
=
F
.
max_pool2d
(
out
,
2
,
stride
=
2
)
out
=
F
.
leaky_relu
(
self
.
batchnorm14
(
self
.
conv14
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm15
(
self
.
conv15
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm16
(
self
.
conv16
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm17
(
self
.
conv17
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm18
(
self
.
conv18
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm19
(
self
.
conv19
(
out
)),
negative_slope
=
0.1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm20
(
self
.
conv20
(
out
)),
negative_slope
=
0.1
)
out
=
torch
.
cat
([
passthrough
,
out
],
1
)
out
=
F
.
leaky_relu
(
self
.
batchnorm21
(
self
.
conv21
(
out
)),
negative_slope
=
0.1
)
out
=
self
.
conv22
(
out
)
return
out
model
=
Yolov2
()
model
.
eval
()
xb
=
torch
.
rand
((
1
,
3
,
224
,
224
))
yp
=
model
(
xb
)
export_onnx_with_validation
(
model
,
(
xb
,
),
'sample_yolov2'
,
[
'image'
],
[
'pred'
],
verbose
=
True
,
training
=
False
)
onnx2fluid/onnx2fluid/symbolic.py
浏览文件 @
30be2502
...
...
@@ -77,7 +77,7 @@ DEFAULT_OP_MAPPING = {
'Sqrt'
:
[
'sqrt'
,
[
'X'
],
[
'Out'
]],
'Tanh'
:
[
'tanh'
,
[
'X'
],
[
'Out'
]],
'ThresholdedRelu'
:
[
'thresholded_relu'
,
[
'X'
],
[
'Out'
],
dict
(
alpha
=
'threshold'
)],
'Transpose'
:
[
'transpose'
,
[
'X'
],
[
'Out'
]],
# FIXME: emit transpose2
# 'Transpose': ['transpose', ['X'], ['Out']],
'Unsqueeze'
:
[
'unsqueeze'
,
[
'X'
],
[
'Out'
]],
# attrs bypassed, FIXME: emit unsqueeze2
## binary ops ##
'Add'
:
[
'elementwise_add'
,
[
'X'
,
'Y'
],
[
'Out'
],
dict
(),
dict
(
axis
=-
1
)],
...
...
@@ -1779,6 +1779,45 @@ def Tile(prog, inputs, outputs, attrs, value_infos, name='', *args, **kwargs):
)
def
Transpose
(
prog
,
inputs
,
outputs
,
attrs
,
*
args
,
name
=
''
,
**
kwargs
):
"""
onnx::Transpose-1:
"""
# I/O
val_data
,
=
inputs
val_transposed
,
=
outputs
var_data
=
_make_var_name
(
val_data
)
var_transposed
=
_make_var_name
(
val_transposed
)
# interpretation
fluid_op
=
'transpose'
perm
=
attrs
[
'perm'
]
# required
name_attr
=
', name={}'
.
format
(
repr
(
name
))
if
name
else
''
# generation
prog
.
Code
(
'{} = layers.{}({}'
', perm={}'
'{})'
.
format
(
var_transposed
,
fluid_op
,
var_data
,
# attrs
perm
,
name_attr
,
))
fluid_op
=
'transpose2'
var_xshape
=
name
+
'.xshape'
# dummy output
prog
.
VarDesc
(
var_xshape
)
prog
.
VarDesc
(
var_transposed
)
prog
.
OpDesc
(
fluid_op
,
([
var_data
],
'X'
),
([
var_transposed
,
var_xshape
],
'Out'
,
'XShape'
),
dict
(
axis
=
perm
),
# f**k you API
)
def
Upsample
(
prog
,
inputs
,
outputs
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录