diff --git a/x2paddle/core/program.py b/x2paddle/core/program.py index e7d96c7813ab0d536e3aab525ea0c3930c8456d1..9b7cd84ee925aff751cdaf9b0bf144249d06d3ce 100644 --- a/x2paddle/core/program.py +++ b/x2paddle/core/program.py @@ -210,8 +210,8 @@ class PaddleGraph(object): if self.edges_in.get(layer_id, 0) == 0 and self.edges_out.get( layer_id, 0) == 0 and layer.kernel != "prim.assert" \ and layer.kernel != "prim.exception" \ - and layer.kernel != "prim.warnings": - if layer.kernel == "paddle.to_tensor": + and layer.kernel != "prim.warnings" and layer.outputs[0] not in self.outputs: + if layer.kernel == "paddle.to_tensor" and layer.outputs[0] in self.inputs_info: self.inputs_info.pop(layer.outputs[0]) invalid_list.append(layer_id) for layer_id in invalid_list: diff --git a/x2paddle/decoder/onnx_decoder.py b/x2paddle/decoder/onnx_decoder.py index 694b340e21b0e92cca15760dfc9f81aa89d97cd8..3db83a895fd6198f7f08f36d10f033f472b806d9 100644 --- a/x2paddle/decoder/onnx_decoder.py +++ b/x2paddle/decoder/onnx_decoder.py @@ -234,11 +234,16 @@ class ONNXGraph(Graph): """ generate output_nodes node of ONNX model """ - inner_nodes = self.get_inner_nodes() +# inner_nodes = self.get_inner_nodes() output_nodes = [value.name for value in self.graph.output] +# for opt_data in output_nodes: +# if opt_data not in inner_nodes: +# self.output_nodes.append(opt_data) for opt_data in output_nodes: - if opt_data not in inner_nodes: - self.output_nodes.append(opt_data) + n = super(ONNXGraph, self).get_node(opt_data) + if n is None: + self.topo_sort.append(self.node_map[opt_data]) + self.output_nodes.append(opt_data) def is_place_holder_nodes(self, layer): """ @@ -403,7 +408,7 @@ class ONNXDecoder(object): check_model(onnx_model) onnx_model = self.optimize_model_skip_op(onnx_model) - onnx_model = self.optimize_model_strip_initializer(onnx_model) +# onnx_model = self.optimize_model_strip_initializer(onnx_model) onnx_model = self.optimize_node_name(onnx_model) self.graph = ONNXGraph(onnx_model) #self.onnx_model = onnx_model diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py index 91dcc90394d9cf59b22bade849b25f478136bff8..2bb406520e78a6282d8eb747e634aff1ab6faecd 100644 --- a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/__init__.py @@ -14,4 +14,6 @@ from .one_hot import OneHot -from .pad import CustomPad \ No newline at end of file +from .pad_two_input import PadWithTwoInput +from .pad_all_dim2 import PadAllDim2 +from .pad_all_dim4 import PadAllDim4 \ No newline at end of file diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py index df0d4094e082d69c26966f8886cee0231205a62b..def62ed8e8501dba5beb86e0759214b559cc0d0a 100644 --- a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/one_hot.py @@ -19,30 +19,17 @@ class OneHot(object): self.axis = axis def __call__(self, indices, depth, values): - indices_shape = paddle.shape(indices) - tmp = paddle.ones_like(indices_shape, dtype="int32") - rank = paddle.sum(tmp) + indices_shape = indices.shape + rank = len(indices.shape) + real_axis = self.axis + if self.axis < 0: + real_axis = self.axis + rank + 1 depth_range = paddle.arange(end=depth) - zero = paddle.zeros([1], dtype="int32") - one = paddle.ones([1], dtype="int32") - axis = self.axis * one - new_axis = axis + rank + 1 - cond = paddle.less_than(axis, zero) - real_axis = paddle.where(cond, new_axis, axis) - ls = paddle.slice(indices_shape, axes=[0], starts=[0], ends=real_axis) - rs = paddle.slice(indices_shape, axes=[0], starts=real_axis, ends=rank) - tmp = paddle.ones_like(ls, dtype="int32") - ls_len = paddle.sum(tmp) - ls_list = paddle.ones(ls_len, dtype="int32") - tmp = paddle.ones_like(rs, dtype="int32") - rs_len = paddle.sum(tmp) - rs_list = paddle.ones(rs_len, dtype="int32") - depth_range_shape = paddle.shape(depth_range) - targets_shape = paddle.concat([ls_list, depth_range_shape, rs_list], axis=0) - targets = paddle.reshape(depth_range, targets_shape) + ls = tuple(indices_shape[0: real_axis]) + rs = tuple(indices_shape[real_axis: rank]) + targets = paddle.reshape(depth_range, (1,) * (real_axis-0) + tuple(depth_range.shape) + (1,) * (rank-real_axis)) mod = paddle.mod(indices, depth) - v_shape = paddle.concat([ls, paddle.shape(one), rs], axis=0) - v = paddle.reshape(mod, v_shape) + v = paddle.reshape(mod, ls + (1,) + rs) out = targets == v out = paddle.cast(out, "float32") on_value = paddle.slice(values, axes=[0], starts=[1], ends=[2]) diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim2.py b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim2.py new file mode 100644 index 0000000000000000000000000000000000000000..6228ae7bbad5f39db998dab41fc824fa51182f03 --- /dev/null +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim2.py @@ -0,0 +1,35 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle +from x2paddle.core.util import * + +class PadAllDim2(object): + def __init__(self, value, mode): + self.layer_attrs = {} + self.layer_attrs['mode'] = mode + self.layer_attrs['data_format'] = 'NCHW' + self.layer_attrs['value'] = value + + + def __call__(self, x, pad): + pad = paddle.reshape(pad, shape=[2, -1]) + pad = paddle.transpose(pad, perm=[1, 0]) + pad = paddle.reverse(pad, axis=[0]) + pad = paddle.flatten(pad) + pad = paddle.cast(pad, dtype="int32") + x = paddle.unsqueeze(x, axis=[0, 1]) + out = paddle.nn.functional.pad(x=x, pad=pad, **self.layer_attrs) + out = paddle.squeeze(out, axis=[0, 1]) + return out \ No newline at end of file diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim4.py b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim4.py new file mode 100644 index 0000000000000000000000000000000000000000..d1c2c382cda57a211b465155acace5d578a1657d --- /dev/null +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_all_dim4.py @@ -0,0 +1,37 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle +from x2paddle.core.util import * + +class PadAllDim4(object): + def __init__(self, value, mode): + self.layer_attrs = {} + self.layer_attrs['mode'] = mode + self.layer_attrs['data_format'] = 'NCHW' + self.layer_attrs['value'] = value + + + def __call__(self, x, pad): + pad = paddle.reshape(pad, shape=[2, -1]) + pad = paddle.transpose(pad, perm=[1, 0]) + pad = paddle.reverse(pad, axis=[0]) + pad = paddle.flatten(pad) + pad = paddle.cast(pad, dtype="int32") + pad1, pad2 = paddle.split(pad, num_or_sections=2, axis=0) + x = paddle.nn.functional.pad(x=x, pad=pad1, **self.layer_attrs) + x = paddle.transpose(x, perm=[2, 3, 0, 1]) + x = paddle.nn.functional.pad(x=x, pad=pad2, **self.layer_attrs) + out = paddle.transpose(x, perm=[2, 3, 0, 1]) + return out \ No newline at end of file diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad.py b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_two_input.py similarity index 78% rename from x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad.py rename to x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_two_input.py index 046fa315ca32f2c621af027f26259a8ca70653fd..e1053eda35b399a3cb3976347d30659e8ef74d7d 100644 --- a/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad.py +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/onnx_custom_layer/pad_two_input.py @@ -13,12 +13,13 @@ # limitations under the License. import paddle +from x2paddle.core.util import * -class CustomPad(object): - def __init__(self, value, mode): +class PadWithTwoInput(object): + def __init__(self, value, mode, data_format): self.layer_attrs = {} - self.layer_attrs['mode'] = string(mode) - self.layer_attrs['data_format'] = string('NCHW') + self.layer_attrs['mode'] = mode + self.layer_attrs['data_format'] = data_format self.layer_attrs['value'] = value @@ -27,5 +28,6 @@ class CustomPad(object): pad = paddle.transpose(pad, perm=[1, 0]) pad = paddle.reverse(pad, axis=[0]) pad = paddle.flatten(pad) + pad = paddle.cast(pad, dtype="int32") out = paddle.nn.functional.pad(x=x, pad=pad, **self.layer_attrs) return out \ No newline at end of file diff --git a/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py b/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py index 3b285fcee9682d3e409b3ea92fcb16b1124151f7..4311f50ab559cbdbd22a0c83b932b4e8a6c48ff8 100644 --- a/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py +++ b/x2paddle/op_mapper/dygraph/onnx2paddle/opset9/opset.py @@ -142,6 +142,7 @@ class OpSet9(): self.inputs_info = dict() self.weights = dict() self.nn_name2id = dict() + self.done_weight_list = list() @print_mapping_info def directly_map(self, node, *args, **kwargs): @@ -232,8 +233,7 @@ class OpSet9(): shape=shape, attr=string(node.name), dtype=string(dtype), - default_initializer="paddle.nn.initializer.Constant(value=0.0)") - + default_initializer="paddle.nn.initializer.Constant(value=0.0)") def _pad_if_asymmetric(self, node, pads, val_name): # pads: SSEE assert len(pads) & 1 == 0 @@ -394,78 +394,111 @@ class OpSet9(): value = node.get_attr('value', 0.) data_shape = val_x.out_shapes[0] output_shape = node.out_shapes[0] - assume_pad2d = False + assume_pad = False layer_attrs = {} layer_attrs['mode'] = string(mode) + layer_attrs['value'] = value + if not op_independent: + output_name = node.name + '_paded' + else: + output_name = node.name + nn_op_name = name_generator("pad", self.nn_name2id) + layer_outputs = [nn_op_name, output_name] if is_pads_attr: paddings = [] - if len(pads) == 4: - assume_pad2d |= mode != 'constant' + if len(pads) in [2, 4, 6]: if data_shape: - assume_pad2d |= data_shape and len(data_shape) == 4 # NCHW + assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW if output_shape: - assume_pad2d |= output_shape and len(output_shape) == 4 # NCHW - if assume_pad2d: - paddle_op = 'paddle.nn.Pad2D' - layer_attrs['data_format'] = string('NCHW') - layer_attrs['value'] = value - else: - paddle_op = 'paddle.fluid.layers.pad' - layer_attrs["pad_value"] = value - if len(pads) == 4: - paddings = np.array(pads).reshape( - (-1, 2)).transpose().flatten().tolist() # SSEE -> SESE + assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads) # NCHW + if assume_pad: + paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2) + paddings = np.array(pads).reshape( + (2, -1)).transpose().astype("int32") + paddings = np.flip(paddings).flatten().tolist() + layer_attrs['padding'] = paddings + else: + if data_shape: + assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW + if output_shape: + assume_pad |= output_shape and 2 * len(output_shape) == len(pads) # NCHW + if assume_pad: + paddle_op = 'paddle.nn.functional.pad' + paddings = np.array(pads).reshape( + (2, -1)).transpose().astype("int32").flatten().tolist() + layer_attrs['pad'] = paddings + else: + raise Exception("The padding value {} is wrong!".format(pads)) elif len(pads) == 8: - paddings = np.array(pads).reshape( - (-1, 4)).transpose().flatten().tolist() # SSEE -> SESE - if sum(paddings[:4]) == 0: - paddle_op = 'paddle.nn.Pad2D' - paddings = paddings[4:] - layer_attrs['value'] = value - if 'pad_value' in layer_attrs: - layer_attrs.pop('pad_value') - tmp_paddings = copy.deepcopy(paddings) - paddings[0] = tmp_paddings[2] - paddings[1] = tmp_paddings[3] - paddings[2] = tmp_paddings[0] - paddings[3] = tmp_paddings[1] - if paddle_op == 'paddle.nn.Pad2D': - layer_attrs['padding'] = paddings - nn_op_name = name_generator("pad2d", self.nn_name2id) - else: - layer_attrs['paddings'] = paddings - if op_independent: - self.paddle_graph.add_layer( - paddle_op, - inputs={'x': val_x.name}, - outputs=[nn_op_name, node.name] if paddle_op == 'paddle.nn.Pad2D' else [node.name], - **layer_attrs) + if data_shape: + assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW + if output_shape: + assume_pad |= output_shape and 2 * len(output_shape) == len(pads) # NCHW + if assume_pad: + paddle_op = 'paddle.nn.functional.pad' + paddings = np.array(pads).reshape( + (2, -1)).transpose().astype("int32").flatten().tolist() + layer_attrs['pad'] = paddings else: - self.paddle_graph.add_layer( - paddle_op, - inputs={'x': val_x.name}, - outputs=[nn_op_name, node.name + '_paded'] if paddle_op == 'paddle.nn.Pad2D' \ - else [node.name + '_paded'], - **layer_attrs) + raise Exception("The padding value {} is wrong!".format(pads)) + self.paddle_graph.add_layer( + paddle_op, + inputs={'x': val_x.name}, + outputs=layer_outputs[1:] if paddle_op == 'paddle.nn.functional.pad' else layer_outputs, + **layer_attrs) + if not op_independent: return node.name + '_paded' else: - if pad_shape[0] == 4: - assume_pad2d |= mode != 'constant' + pads_len = val_pad.out_shapes[0][0] + if pads_len in [2, 4, 6]: if data_shape: - assume_pad2d |= data_shape and len(data_shape) == 4 # NCHW + assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW if output_shape: - assume_pad2d |= output_shape and len(output_shape) == 4 # NCHW - if pad_shape[0] == 8 or not assume_pad2d: - raise Exception("When the pad shape is 8 and pad is tensor, the op is not supported yet!") - nn_op_name = name_generator("custom_pad", self.nn_name2id) - output_name = node.name + '_paded' - layer_outputs = [nn_op_name, output_name] - layer_attrs['value'] = value - self.paddle_graph.add_layer( - "custom_layer:CustomPad", - inputs={'x': val_x.name, 'pad': val_pad.name}, - outputs=layer_outputs, - **layer_attrs) + assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len # NCHW + if assume_pad: + if pads_len == 2: + data_format = "NCL" + elif pads_len == 4: + data_format = "NCHW" + else: + data_format = "NCDHW" + self.paddle_graph.add_layer( + "custom_layer:PadWithTwoInput", + inputs={'x': val_x.name, 'pad': val_pad.name}, + outputs=layer_outputs, + value=value, + mode=string(mode), + data_format=string(data_format)) + else: + if data_shape: + assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW + if output_shape: + assume_pad |= output_shape and 2 * len(output_shape) == pads_len # NCHW + if assume_pad: + if pads_len == 4: + self.paddle_graph.add_layer( + "custom_layer:PadAllDim2", + inputs={'x': val_x.name, 'pad': val_pad.name}, + outputs=layer_outputs, + value=value, + mode=string(mode)) + else: + raise Exception("The padding value is wrong!") + elif pads_len == 8: + if data_shape: + assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW + if output_shape: + assume_pad |= output_shape and 2 * len(output_shape) == pads_len # NCHW + if assume_pad: + self.paddle_graph.add_layer( + "custom_layer:PadAllDim4", + inputs={'x': val_x.name, 'pad': val_pad.name}, + outputs=layer_outputs, + value=value, + mode=string(mode)) + else: + print(pads_len) + raise Exception("The padding value is wrong!") if not op_independent: return node.name + '_paded' @@ -678,8 +711,9 @@ class OpSet9(): 'paddle.nn.Embedding', inputs={"x": indices_cast}, outputs=layer_outputs, - param_attr=string(val_x.name), - size=val_x.out_shapes[0]) + weight_attr=string(val_x.name), + num_embeddings=val_x.out_shapes[0][0], + embedding_dim=val_x.out_shapes[0][1]) else: from functools import reduce reshape_shape = reduce(lambda x, y: x * y, indices_shape) @@ -851,14 +885,21 @@ class OpSet9(): starts = self.graph.get_input_node(node, idx=1, copy=True) ends = self.graph.get_input_node(node, idx=2, copy=True) starts_value = _const_weight_or_none(starts) + if starts_value is not None: + starts_value = starts_value.tolist() ends_value = _const_weight_or_none(ends) - + if ends_value is not None: + ends_value = ends_value.tolist() + if len(node.inputs) > 2: + s_len = len(val_x.out_shapes[0]) + axes = list(range(s_len)) if len(node.inputs) > 3: - axes = self.graph.get_input_node(node, idx=3, copy=True) - axes = _const_weight_or_none(axes, necessary=True) + axes_node = self.graph.get_input_node(node, idx=3, copy=True) + axes = _const_weight_or_none(axes_node, necessary=True).tolist() if len(node.inputs) > 4: steps = self.graph.get_input_node(node, idx=4, copy=True) - steps = _const_weight_or_none(steps) + steps = _const_weight_or_none(steps).tolist() + layer_attrs = { "axes": axes, "starts": starts.name, @@ -911,6 +952,7 @@ class OpSet9(): ends[idx] = 2**31 - 1 layer_attrs = {"axes": axes, "starts": starts, "ends": ends} + if steps is not None: layer_attrs['strides'] = steps self.paddle_graph.add_layer( @@ -1036,6 +1078,12 @@ class OpSet9(): inputs={'x': val_shape.name}, outputs=[val_shape.name], shape=val_shape.out_shapes[0]) + if val_shape.dtype != "int32": + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={'x': val_shape.name}, + outputs=[val_shape.name], + dtype=string("int32")) self.paddle_graph.add_layer( 'paddle.reshape', inputs={'x': val_x.name, @@ -1280,7 +1328,10 @@ class OpSet9(): @print_mapping_info def Transpose(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) - perm = node.get_attr('perm') + s_len = len(val_x.out_shapes[0]) + perm_default = list(range(s_len)) + perm_default.reverse() + perm = node.get_attr('perm', perm_default) self.paddle_graph.add_layer( "paddle.transpose", inputs={"x": val_x.name}, @@ -1584,6 +1635,7 @@ class OpSet9(): strides[1]) paddings = pad_h + pad_w + layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name} layer_attrs = { "in_channels": num_in_channels * num_groups, "out_channels": num_out_channels, @@ -1592,15 +1644,25 @@ class OpSet9(): "padding": paddings, "dilation": dilations, "groups": num_groups, - 'weight_attr': string(val_w.name), } + val_w_name = val_w.name + while val_w_name in self.done_weight_list: + val_w_name += "__repeat" + self.done_weight_list.append(val_w_name) + layer_attrs["weight_attr"] = string(val_w_name) + self.weights[val_w_name] = self.weights[val_w.name] if has_bias: - layer_attrs["bias_attr"] = string(val_b.name) + val_b_name = val_b.name + while val_b_name in self.done_weight_list: + val_b_name += "__repeat" + self.done_weight_list.append(val_b_name) + layer_attrs["bias_attr"] = string(val_b_name) + self.weights[val_b_name] = self.weights[val_b.name] else: layer_attrs["bias_attr"] = False self.paddle_graph.add_layer( paddle_op, - inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, + inputs=layer_inputs, outputs=layer_outputs, **layer_attrs) @@ -1674,8 +1736,13 @@ class OpSet9(): val_x = self.graph.get_input_node(node, idx=0, copy=True) self.paddle_graph.add_layer( "paddle.shape", - inputs={"x": val_x.name}, + inputs={"input": val_x.name}, outputs=[node.name]) + self.paddle_graph.add_layer( + 'paddle.cast', + inputs={"x": node.name}, + outputs=[node.name], + dtype=string('int64')) self.paddle_graph.add_layer( "paddle.prod", inputs={"x": node.name}, @@ -1684,10 +1751,22 @@ class OpSet9(): @print_mapping_info def Sign(self, node): val_x = self.graph.get_input_node(node, idx=0, copy=True) + if node.dtype not in ["float16", "float32", "float64"]: + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": val_x.name}, + outputs=[val_x.name], + dtype=string("float32")) self.paddle_graph.add_layer( "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name]) + if node.dtype not in ["float16", "float32", "float64"]: + self.paddle_graph.add_layer( + "paddle.cast", + inputs={"x": node.name}, + outputs=[node.name], + dtype=string(node.dtype)) @print_mapping_info def OneHot(self, node):