Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
X2Paddle
提交
01173a3b
X
X2Paddle
项目概览
PaddlePaddle
/
X2Paddle
1 年多 前同步成功
通知
328
Star
698
Fork
167
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
26
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
X
X2Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
26
Issue
26
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
01173a3b
编写于
5月 27, 2020
作者:
M
mamingjie-China
提交者:
GitHub
5月 27, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1 from PaddlePaddle/develop
update
上级
9090d09c
5480c7dc
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
64 addition
and
34 deletion
+64
-34
x2paddle/convert.py
x2paddle/convert.py
+4
-1
x2paddle/decoder/caffe_decoder.py
x2paddle/decoder/caffe_decoder.py
+15
-6
x2paddle/decoder/tf_decoder.py
x2paddle/decoder/tf_decoder.py
+16
-3
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
+2
-3
x2paddle/op_mapper/caffe_op_mapper.py
x2paddle/op_mapper/caffe_op_mapper.py
+4
-4
x2paddle/op_mapper/caffe_shape.py
x2paddle/op_mapper/caffe_shape.py
+8
-6
x2paddle/op_mapper/onnx_directly_map.py
x2paddle/op_mapper/onnx_directly_map.py
+3
-2
x2paddle/op_mapper/onnx_op_mapper.py
x2paddle/op_mapper/onnx_op_mapper.py
+2
-4
x2paddle/op_mapper/tf_op_mapper.py
x2paddle/op_mapper/tf_op_mapper.py
+9
-3
x2paddle/op_mapper/tf_op_mapper_nhwc.py
x2paddle/op_mapper/tf_op_mapper_nhwc.py
+1
-2
未找到文件。
x2paddle/convert.py
浏览文件 @
01173a3b
...
...
@@ -211,7 +211,10 @@ def main():
try
:
import
paddle
v0
,
v1
,
v2
=
paddle
.
__version__
.
split
(
'.'
)
if
int
(
v0
)
!=
1
or
int
(
v1
)
<
6
:
print
(
"paddle.__version__ = {}"
.
format
(
paddle
.
__version__
))
if
v0
==
'0'
and
v1
==
'0'
and
v2
==
'0'
:
print
(
"[WARNING] You are use develop version of paddlepaddle"
)
elif
int
(
v0
)
!=
1
or
int
(
v1
)
<
6
:
print
(
"[ERROR] paddlepaddle>=1.6.0 is required"
)
return
except
:
...
...
x2paddle/decoder/caffe_decoder.py
浏览文件 @
01173a3b
...
...
@@ -171,6 +171,14 @@ class CaffeGraph(Graph):
self
.
input2layers
(
input_layers
)
self
.
transform_input_layers
(
layers
,
input_layers
)
layers
=
input_layers
+
layers
for
layer
in
layers
:
if
hasattr
(
layer
,
'name'
):
name
=
getattr
(
layer
,
'name'
)
setattr
(
layer
,
'name'
,
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
for
i
,
name
in
enumerate
(
layer
.
bottom
):
layer
.
bottom
[
i
]
=
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
)
for
i
,
name
in
enumerate
(
layer
.
top
):
layer
.
top
[
i
]
=
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
)
top_layer
=
{}
for
layer
in
layers
:
...
...
@@ -232,10 +240,12 @@ class CaffeDecoder(object):
def
load_using_pb
(
self
):
data
=
self
.
resolver
.
NetParameter
()
data
.
MergeFromString
(
open
(
self
.
model_path
,
'rb'
).
read
())
pair
=
lambda
layer
:
(
layer
.
name
,
self
.
normalize_pb_data
(
layer
))
layers
=
data
.
layers
or
data
.
layer
for
layer
in
layers
:
setattr
(
layer
,
'name'
,
layer
.
name
.
replace
(
'/'
,
'_'
).
replace
(
'-'
,
'_'
))
pair
=
lambda
layer
:
(
layer
.
name
,
self
.
normalize_pb_data
(
layer
))
self
.
params
=
[
pair
(
layer
)
for
layer
in
layers
if
layer
.
blobs
]
def
normalize_pb_data
(
self
,
layer
):
...
...
@@ -246,14 +256,13 @@ class CaffeDecoder(object):
if
layer
.
type
==
'PReLU'
:
c_o
,
c_i
,
h
,
w
=
map
(
int
,
[
1
]
+
\
list
(
dims
)
+
[
1
]
*
(
3
-
len
(
dims
)))
elif
layer
.
type
==
'Normalize'
:
elif
layer
.
type
==
'Normalize'
and
len
(
dims
)
==
4
:
data
=
np
.
asarray
(
list
(
blob
.
data
),
dtype
=
np
.
float32
)
transformed
.
append
(
data
)
continue
else
:
c_o
,
c_i
,
h
,
w
=
map
(
int
,
[
1
]
*
(
4
-
len
(
dims
))
\
+
list
(
dims
))
c_o
,
c_i
,
h
,
w
=
map
(
int
,
[
1
]
*
(
4
-
len
(
dims
))
+
list
(
dims
))
else
:
c_o
=
blob
.
num
c_i
=
blob
.
channels
...
...
x2paddle/decoder/tf_decoder.py
浏览文件 @
01173a3b
...
...
@@ -48,7 +48,10 @@ class TFGraphNode(GraphNode):
@
property
def
out_shapes
(
self
):
values
=
self
.
layer
.
attr
[
"_output_shapes"
].
list
.
shape
if
self
.
layer_type
==
"OneShotIterator"
:
values
=
self
.
layer
.
attr
[
"output_shapes"
].
list
.
shape
else
:
values
=
self
.
layer
.
attr
[
"_output_shapes"
].
list
.
shape
out_shapes
=
list
()
for
value
in
values
:
shape
=
[
dim
.
size
for
dim
in
value
.
dim
]
...
...
@@ -62,6 +65,8 @@ class TFGraphNode(GraphNode):
dtype
=
self
.
layer
.
attr
[
k
].
type
if
dtype
>
0
:
break
if
dtype
==
0
:
dtype
=
self
.
layer
.
attr
[
'output_types'
].
list
.
type
[
0
]
if
dtype
not
in
self
.
dtype_map
:
raise
Exception
(
"Dtype[{}] not in dtype_map"
.
format
(
dtype
))
return
self
.
dtype_map
[
dtype
]
...
...
@@ -226,7 +231,7 @@ class TFGraph(Graph):
def
_remove_identity_node
(
self
):
identity_ops
=
[
'Identity'
,
'StopGradient'
,
'Switch'
,
'Merge'
,
'PlaceholderWithDefault'
'PlaceholderWithDefault'
,
'IteratorGetNext'
]
identity_node
=
list
()
for
node_name
,
node
in
self
.
node_map
.
items
():
...
...
@@ -317,7 +322,7 @@ class TFDecoder(object):
graph_def
=
cp
.
deepcopy
(
graph_def
)
input_map
=
dict
()
for
layer
in
graph_def
.
node
:
if
layer
.
op
!=
"Placeholder"
:
if
layer
.
op
!=
"Placeholder"
and
layer
.
op
!=
"OneShotIterator"
:
continue
graph_node
=
TFGraphNode
(
layer
)
dtype
=
graph_node
.
layer
.
attr
[
'dtype'
].
type
...
...
@@ -335,6 +340,14 @@ class TFDecoder(object):
if
shape
.
count
(
-
1
)
>
1
:
need_define_shape
=
2
if
need_define_shape
==
1
:
try
:
shape
=
graph_node
.
out_shapes
[
0
]
if
len
(
shape
)
>
0
and
shape
.
count
(
-
1
)
<
2
:
need_define_shape
=
0
except
:
pass
if
need_define_shape
>
0
:
shape
=
None
if
graph_node
.
get_attr
(
"shape"
):
...
...
x2paddle/op_mapper/caffe_custom_layer/detectionoutput.py
浏览文件 @
01173a3b
...
...
@@ -12,7 +12,6 @@ def detectionoutput_layer(inputs,
share_location
=
True
,
keep_top_k
=
100
,
confidence_threshold
=
0.1
,
num_classes
=
2
,
input_shape
=
None
,
name
=
None
):
nms_param_str
=
nms_param
...
...
@@ -37,9 +36,9 @@ def detectionoutput_layer(inputs,
pb
=
fluid
.
layers
.
reshape
(
x
=
pb
,
shape
=
[
-
1
,
4
])
pbv
=
fluid
.
layers
.
reshape
(
x
=
pbv
,
shape
=
[
-
1
,
4
])
mbox_loc
=
inputs
[
0
]
mbox_loc
=
fluid
.
layers
.
reshape
(
x
=
mbox_loc
,
shape
=
[
0
,
-
1
,
4
])
mbox_loc
=
fluid
.
layers
.
reshape
(
x
=
mbox_loc
,
shape
=
[
-
1
,
pb
.
shape
[
0
]
,
4
])
mbox_conf_flatten
=
fluid
.
layers
.
reshape
(
x
=
mbox_conf_flatten
,
shape
=
[
0
,
-
1
,
num_classes
])
shape
=
[
0
,
pb
.
shape
[
0
],
-
1
])
default
=
{
"nms_threshold"
:
0.3
,
"top_k"
:
10
,
"eta"
:
1.0
}
fields
=
[
'eta'
,
'top_k'
,
'nms_threshold'
]
...
...
x2paddle/op_mapper/caffe_op_mapper.py
浏览文件 @
01173a3b
...
...
@@ -797,21 +797,21 @@ class CaffeOpMapper(OpMapper):
input
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
0
,
copy
=
True
)
example
=
self
.
graph
.
get_bottom_node
(
node
,
idx
=
1
,
copy
=
True
)
params
=
node
.
layer
.
crop_param
axis
=
par
ma
s
.
axis
axis
=
par
am
s
.
axis
input_shape
=
node
.
input_shape
[
0
]
if
axis
<
0
:
axis
+=
len
(
input_shape
)
offset_real
=
[
0
]
*
len
(
input_shape
)
if
hasattr
(
params
,
offset
)
:
if
hasattr
(
params
,
"offset"
)
and
len
(
params
.
offset
)
>
0
:
offset
=
list
(
params
.
offset
)
assert
(
len
(
input_shape
)
-
axis
)
==
len
(
offset
),
"invalid offset[%s] in crop layer"
%
(
str
(
offset
))
offset_real
=
[
0
]
*
axis
+
offset
attr
=
{
'offsets'
:
offset_real
,
'name'
:
string
(
node
.
layer_name
)}
attr
=
{
'offsets'
:
list
(
offset_real
)
,
'name'
:
string
(
node
.
layer_name
)}
node
.
fluid_code
.
add_layer
(
"crop"
,
inputs
=
{
'x'
:
input
,
'
y'
:
example
'
shape'
:
node
.
input_shape
[
1
]
},
output
=
node
,
param_attr
=
attr
)
...
...
x2paddle/op_mapper/caffe_shape.py
浏览文件 @
01173a3b
...
...
@@ -293,12 +293,15 @@ def shape_reshape(layer, input_shape):
explicit_count
*=
count
(
l
)
for
i
in
range
(
len
(
copy_axes
)):
explicit_count
*=
outshape
[
start_axis
+
copy_axes
[
i
]]
outshape
[
start_axis
+
inferred_axis
]
=
-
1
outshape
[
0
]
=
0
else
:
outshape
[
0
]
=
-
1
assert
input_count
%
explicit_count
==
0
,
"[Reshape]botom count[%d] "
\
"must be divisible by product of the specified dimensions[%d] "
\
%
(
input_count
,
explicit_count
)
outshape
[
start_axis
+
inferred_axis
]
=
int
(
input_count
/
explicit_count
)
output_count
=
count
(
outshape
)
assert
output_count
==
input_count
,
"[Reshape]output count[%d] must match input count[%d]"
%
(
output_count
,
input_count
)
outshape
[
0
]
=
-
1
return
[
outshape
]
...
...
@@ -342,10 +345,9 @@ def shape_flatten(layer, input_shape):
output_shape
=
inshape
[
0
:
start_axis
]
if
len
(
inshape
[
start_axis
:
end_axis
])
!=
0
:
flat_sz
=
reduce
(
lambda
a
,
b
:
a
*
b
,
inshape
[
start_axis
:
end_axis
])
flat_sz
=
-
1
output_shape
[
0
]
=
0
output_shape
+=
[
flat_sz
]
output_shape
+=
inshape
[
end_axis
:
len
(
inshape
)]
output_shape
[
0
]
=
-
1
return
[
output_shape
]
...
...
x2paddle/op_mapper/onnx_directly_map.py
浏览文件 @
01173a3b
...
...
@@ -32,11 +32,12 @@ default_op_mapping = {
dict
(),
dict
(
min
=
(
_np
.
asarray
([
255
,
255
,
127
,
255
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)),
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)
[
0
]
),
max
=
(
_np
.
asarray
([
255
,
255
,
127
,
127
],
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)),
dtype
=
_np
.
uint8
).
view
(
_np
.
float32
)
[
0
]
),
)
],
'Erf'
:
[
'erf'
,
[
'X'
],
[
'Out'
]],
'Ceil'
:
[
'ceil'
,
[
'X'
],
[
'Out'
]],
'ReduceMean'
:
[
'reduce_mean'
,
[
'X'
],
[
'Out'
],
...
...
x2paddle/op_mapper/onnx_op_mapper.py
浏览文件 @
01173a3b
...
...
@@ -373,7 +373,6 @@ class ONNXOpMapper(OpMapper):
val_x
=
self
.
graph
.
get_input_node
(
node
,
idx
=
0
,
copy
=
True
)
val_scales
=
self
.
graph
.
get_input_node
(
node
,
idx
=
1
,
copy
=
True
)
val_y
=
self
.
graph
.
get_node
(
node
.
layer
.
output
[
0
],
copy
=
True
)
out_shape
=
val_y
.
out_shapes
[
0
]
if
out_shape
is
not
None
:
assert
len
(
out_shape
)
==
4
,
'only 4-D Tensor as X and Y supported'
...
...
@@ -383,7 +382,6 @@ class ONNXOpMapper(OpMapper):
if
isinstance
(
val_scales
,
ONNXGraphNode
):
scales
,
_
,
_
=
self
.
get_dynamic_shape
(
val_scales
.
layer_name
)
attr
=
{
'name'
:
string
(
node
.
layer_name
)}
use_scales
=
True
if
scales
is
not
None
:
...
...
@@ -708,8 +706,8 @@ class ONNXOpMapper(OpMapper):
self
.
omit_nodes
.
append
(
starts
.
layer_name
)
self
.
omit_nodes
.
append
(
ends
.
layer_name
)
starts
=
_const_weight_or_none
(
starts
)
ends
=
_const_weight_or_none
(
ends
)
starts
=
_const_weight_or_none
(
starts
)
.
copy
()
ends
=
_const_weight_or_none
(
ends
)
.
copy
()
else
:
starts
=
node
.
get_attr
(
'starts'
)
ends
=
node
.
get_attr
(
'ends'
)
...
...
x2paddle/op_mapper/tf_op_mapper.py
浏览文件 @
01173a3b
...
...
@@ -85,7 +85,7 @@ class TFOpMapper(OpMapper):
not_placeholder
=
list
()
for
name
in
self
.
graph
.
input_nodes
:
if
self
.
graph
.
get_node
(
name
).
layer_type
!=
"Placeholder"
:
if
self
.
graph
.
get_node
(
name
).
layer_type
!=
"Placeholder"
and
self
.
graph
.
get_node
(
name
).
layer_type
!=
"OneShotIterator"
:
not_placeholder
.
append
(
name
)
for
name
in
not_placeholder
:
idx
=
self
.
graph
.
input_nodes
.
index
(
name
)
...
...
@@ -287,6 +287,9 @@ class TFOpMapper(OpMapper):
output
=
node
,
param_attr
=
attr
)
def
OneShotIterator
(
self
,
node
):
return
self
.
Placeholder
(
node
)
def
Const
(
self
,
node
):
shape
=
node
.
out_shapes
[
0
]
dtype
=
node
.
dtype
...
...
@@ -492,6 +495,9 @@ class TFOpMapper(OpMapper):
output
=
node
,
param_attr
=
attr
)
def
FusedBatchNormV3
(
self
,
node
):
return
self
.
FusedBatchNorm
(
node
)
def
DepthwiseConv2dNative
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
kernel
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
1
],
copy
=
True
)
...
...
@@ -712,7 +718,7 @@ class TFOpMapper(OpMapper):
if
input
.
tf_data_format
==
"NHWC"
:
if
len
(
input
.
out_shapes
[
0
])
==
4
:
expand_times
=
[
expand_times
[
i
]
for
i
in
[
0
,
3
,
1
,
2
]]
elif
len
(
input
.
out_shape
[
0
])
==
3
:
elif
len
(
input
.
out_shape
s
[
0
])
==
3
:
expand_times
=
[
expand_times
[
i
]
for
i
in
[
2
,
0
,
1
]]
for
i
in
range
(
len
(
expand_times
)):
if
expand_times
[
i
]
<
0
:
...
...
@@ -812,7 +818,7 @@ class TFOpMapper(OpMapper):
node
.
fluid_code
.
add_layer
(
"range"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
param_attr
=
attr
)
def
Mean
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
x2paddle/op_mapper/tf_op_mapper_nhwc.py
浏览文件 @
01173a3b
...
...
@@ -744,13 +744,12 @@ class TFOpMapperNHWC(OpMapper):
"start"
:
start
,
"end"
:
limit
,
"step"
:
delta
,
"dtype"
:
string
(
dtype
)
}
attr
=
{
"dtype"
:
string
(
node
.
dtype
)}
node
.
fluid_code
.
add_layer
(
"range"
,
inputs
=
inputs
,
output
=
node
,
param_attr
=
None
)
param_attr
=
attr
)
def
Mean
(
self
,
node
):
input
=
self
.
graph
.
get_node
(
node
.
layer
.
input
[
0
],
copy
=
True
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录