未验证 提交 01173a3b 编写于 作者: M mamingjie-China 提交者: GitHub

Merge pull request #1 from PaddlePaddle/develop

update
......@@ -211,7 +211,10 @@ def main():
try:
import paddle
v0, v1, v2 = paddle.__version__.split('.')
if int(v0) != 1 or int(v1) < 6:
print("paddle.__version__ = {}".format(paddle.__version__))
if v0 == '0' and v1 == '0' and v2 == '0':
print("[WARNING] You are use develop version of paddlepaddle")
elif int(v0) != 1 or int(v1) < 6:
print("[ERROR] paddlepaddle>=1.6.0 is required")
return
except:
......
......@@ -171,6 +171,14 @@ class CaffeGraph(Graph):
self.input2layers(input_layers)
self.transform_input_layers(layers, input_layers)
layers = input_layers + layers
for layer in layers:
if hasattr(layer, 'name'):
name = getattr(layer, 'name')
setattr(layer, 'name', name.replace('/', '_').replace('-', '_'))
for i, name in enumerate(layer.bottom):
layer.bottom[i] = name.replace('/', '_').replace('-', '_')
for i, name in enumerate(layer.top):
layer.top[i] = name.replace('/', '_').replace('-', '_')
top_layer = {}
for layer in layers:
......@@ -232,10 +240,12 @@ class CaffeDecoder(object):
def load_using_pb(self):
data = self.resolver.NetParameter()
data.MergeFromString(open(self.model_path, 'rb').read())
pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
layers = data.layers or data.layer
for layer in layers:
setattr(layer, 'name',
layer.name.replace('/', '_').replace('-', '_'))
pair = lambda layer: (layer.name, self.normalize_pb_data(layer))
self.params = [pair(layer) for layer in layers if layer.blobs]
def normalize_pb_data(self, layer):
......@@ -246,14 +256,13 @@ class CaffeDecoder(object):
if layer.type == 'PReLU':
c_o, c_i, h, w = map(int, [1] + \
list(dims) + [1]* (3 - len(dims)))
elif layer.type == 'Normalize':
elif layer.type == 'Normalize' and len(dims) == 4:
data = np.asarray(list(blob.data), dtype=np.float32)
transformed.append(data)
continue
else:
c_o, c_i, h, w = map(int, [1] * (4 - len(dims)) \
+ list(dims))
c_o, c_i, h, w = map(int,
[1] * (4 - len(dims)) + list(dims))
else:
c_o = blob.num
c_i = blob.channels
......
......@@ -48,6 +48,9 @@ class TFGraphNode(GraphNode):
@property
def out_shapes(self):
if self.layer_type == "OneShotIterator":
values = self.layer.attr["output_shapes"].list.shape
else:
values = self.layer.attr["_output_shapes"].list.shape
out_shapes = list()
for value in values:
......@@ -62,6 +65,8 @@ class TFGraphNode(GraphNode):
dtype = self.layer.attr[k].type
if dtype > 0:
break
if dtype == 0:
dtype = self.layer.attr['output_types'].list.type[0]
if dtype not in self.dtype_map:
raise Exception("Dtype[{}] not in dtype_map".format(dtype))
return self.dtype_map[dtype]
......@@ -226,7 +231,7 @@ class TFGraph(Graph):
def _remove_identity_node(self):
identity_ops = [
'Identity', 'StopGradient', 'Switch', 'Merge',
'PlaceholderWithDefault'
'PlaceholderWithDefault', 'IteratorGetNext'
]
identity_node = list()
for node_name, node in self.node_map.items():
......@@ -317,7 +322,7 @@ class TFDecoder(object):
graph_def = cp.deepcopy(graph_def)
input_map = dict()
for layer in graph_def.node:
if layer.op != "Placeholder":
if layer.op != "Placeholder" and layer.op != "OneShotIterator":
continue
graph_node = TFGraphNode(layer)
dtype = graph_node.layer.attr['dtype'].type
......@@ -335,6 +340,14 @@ class TFDecoder(object):
if shape.count(-1) > 1:
need_define_shape = 2
if need_define_shape == 1:
try:
shape = graph_node.out_shapes[0]
if len(shape) > 0 and shape.count(-1) < 2:
need_define_shape = 0
except:
pass
if need_define_shape > 0:
shape = None
if graph_node.get_attr("shape"):
......
......@@ -12,7 +12,6 @@ def detectionoutput_layer(inputs,
share_location=True,
keep_top_k=100,
confidence_threshold=0.1,
num_classes=2,
input_shape=None,
name=None):
nms_param_str = nms_param
......@@ -37,9 +36,9 @@ def detectionoutput_layer(inputs,
pb = fluid.layers.reshape(x=pb, shape=[-1, 4])
pbv = fluid.layers.reshape(x=pbv, shape=[-1, 4])
mbox_loc = inputs[0]
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[0, -1, 4])
mbox_loc = fluid.layers.reshape(x=mbox_loc, shape=[-1, pb.shape[0], 4])
mbox_conf_flatten = fluid.layers.reshape(x=mbox_conf_flatten,
shape=[0, -1, num_classes])
shape=[0, pb.shape[0], -1])
default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
fields = ['eta', 'top_k', 'nms_threshold']
......
......@@ -797,21 +797,21 @@ class CaffeOpMapper(OpMapper):
input = self.graph.get_bottom_node(node, idx=0, copy=True)
example = self.graph.get_bottom_node(node, idx=1, copy=True)
params = node.layer.crop_param
axis = parmas.axis
axis = params.axis
input_shape = node.input_shape[0]
if axis < 0:
axis += len(input_shape)
offset_real = [0] * len(input_shape)
if hasattr(params, offset):
if hasattr(params, "offset") and len(params.offset) > 0:
offset = list(params.offset)
assert (len(input_shape) - axis) == len(
offset), "invalid offset[%s] in crop layer" % (str(offset))
offset_real = [0] * axis + offset
attr = {'offsets': offset_real, 'name': string(node.layer_name)}
attr = {'offsets': list(offset_real), 'name': string(node.layer_name)}
node.fluid_code.add_layer("crop",
inputs={
'x': input,
'y': example
'shape': node.input_shape[1]
},
output=node,
param_attr=attr)
......
......@@ -293,12 +293,15 @@ def shape_reshape(layer, input_shape):
explicit_count *= count(l)
for i in range(len(copy_axes)):
explicit_count *= outshape[start_axis + copy_axes[i]]
outshape[start_axis + inferred_axis] = -1
outshape[0] = 0
else:
outshape[0] = -1
assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
"must be divisible by product of the specified dimensions[%d] "\
% (input_count, explicit_count)
outshape[start_axis + inferred_axis] = int(input_count / explicit_count)
output_count = count(outshape)
assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
output_count, input_count)
outshape[0] = -1
return [outshape]
......@@ -342,10 +345,9 @@ def shape_flatten(layer, input_shape):
output_shape = inshape[0:start_axis]
if len(inshape[start_axis:end_axis]) != 0:
flat_sz = reduce(lambda a, b: a * b, inshape[start_axis:end_axis])
flat_sz = -1
output_shape[0] = 0
output_shape += [flat_sz]
output_shape += inshape[end_axis:len(inshape)]
output_shape[0] = -1
return [output_shape]
......
......@@ -32,11 +32,12 @@ default_op_mapping = {
dict(),
dict(
min=(_np.asarray([255, 255, 127, 255],
dtype=_np.uint8).view(_np.float32)),
dtype=_np.uint8).view(_np.float32)[0]),
max=(_np.asarray([255, 255, 127, 127],
dtype=_np.uint8).view(_np.float32)),
dtype=_np.uint8).view(_np.float32)[0]),
)
],
'Erf': ['erf', ['X'], ['Out']],
'Ceil': ['ceil', ['X'], ['Out']],
'ReduceMean': [
'reduce_mean', ['X'], ['Out'],
......
......@@ -373,7 +373,6 @@ class ONNXOpMapper(OpMapper):
val_x = self.graph.get_input_node(node, idx=0, copy=True)
val_scales = self.graph.get_input_node(node, idx=1, copy=True)
val_y = self.graph.get_node(node.layer.output[0], copy=True)
out_shape = val_y.out_shapes[0]
if out_shape is not None:
assert len(out_shape) == 4, 'only 4-D Tensor as X and Y supported'
......@@ -383,7 +382,6 @@ class ONNXOpMapper(OpMapper):
if isinstance(val_scales, ONNXGraphNode):
scales, _, _ = self.get_dynamic_shape(val_scales.layer_name)
attr = {'name': string(node.layer_name)}
use_scales = True
if scales is not None:
......@@ -708,8 +706,8 @@ class ONNXOpMapper(OpMapper):
self.omit_nodes.append(starts.layer_name)
self.omit_nodes.append(ends.layer_name)
starts = _const_weight_or_none(starts)
ends = _const_weight_or_none(ends)
starts = _const_weight_or_none(starts).copy()
ends = _const_weight_or_none(ends).copy()
else:
starts = node.get_attr('starts')
ends = node.get_attr('ends')
......
......@@ -85,7 +85,7 @@ class TFOpMapper(OpMapper):
not_placeholder = list()
for name in self.graph.input_nodes:
if self.graph.get_node(name).layer_type != "Placeholder":
if self.graph.get_node(name).layer_type != "Placeholder" and self.graph.get_node(name).layer_type != "OneShotIterator":
not_placeholder.append(name)
for name in not_placeholder:
idx = self.graph.input_nodes.index(name)
......@@ -287,6 +287,9 @@ class TFOpMapper(OpMapper):
output=node,
param_attr=attr)
def OneShotIterator(self, node):
return self.Placeholder(node)
def Const(self, node):
shape = node.out_shapes[0]
dtype = node.dtype
......@@ -492,6 +495,9 @@ class TFOpMapper(OpMapper):
output=node,
param_attr=attr)
def FusedBatchNormV3(self, node):
return self.FusedBatchNorm(node)
def DepthwiseConv2dNative(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
kernel = self.graph.get_node(node.layer.input[1], copy=True)
......@@ -712,7 +718,7 @@ class TFOpMapper(OpMapper):
if input.tf_data_format == "NHWC":
if len(input.out_shapes[0]) == 4:
expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
elif len(input.out_shape[0]) == 3:
elif len(input.out_shapes[0]) == 3:
expand_times = [expand_times[i] for i in [2, 0, 1]]
for i in range(len(expand_times)):
if expand_times[i] < 0:
......@@ -812,7 +818,7 @@ class TFOpMapper(OpMapper):
node.fluid_code.add_layer("range",
inputs=inputs,
output=node,
param_attr=None)
param_attr=attr)
def Mean(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......
......@@ -744,13 +744,12 @@ class TFOpMapperNHWC(OpMapper):
"start": start,
"end": limit,
"step": delta,
"dtype": string(dtype)
}
attr = {"dtype": string(node.dtype)}
node.fluid_code.add_layer("range",
inputs=inputs,
output=node,
param_attr=None)
param_attr=attr)
def Mean(self, node):
input = self.graph.get_node(node.layer.input[0], copy=True)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册