caffe_shape.py 11.1 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
import numbers
from functools import reduce


def get_kernel_parameters(params):
    [k_h, k_w] = [1, 1]
    if isinstance(params.kernel_size, numbers.Number):
        [k_h, k_w] = [params.kernel_size] * 2
    elif len(params.kernel_size) > 0:
        k_h = params.kernel_h if params.kernel_h else params.kernel_size[0]
        k_w = params.kernel_w if params.kernel_w else params.kernel_size[
            len(params.kernel_size) - 1]
    [s_h, s_w] = [1, 1]
    if isinstance(params.stride, numbers.Number):
        [s_h, s_w] = [params.stride] * 2
    elif len(params.stride) > 0:
        s_h = params.stride_h if params.stride_h else params.stride[0]
        s_w = params.stride_w if params.stride_w else params.stride[
            len(params.stride) - 1]
    [p_h, p_w] = [0, 0]
    if isinstance(params.pad, numbers.Number):
        [p_h, p_w] = [params.pad] * 2
    elif len(params.pad) > 0:
        p_h = params.pad_h if params.pad_h else params.pad[0]
        p_w = params.pad_w if params.pad_w else params.pad[len(params.pad) - 1]
    dila_h = dila_w = 1
S
SunAhong1993 已提交
42
    if hasattr(params, 'dilation'):
43 44
        dila_len = len(params.dilation)
        if dila_len == 2:
S
SunAhong1993 已提交
45 46
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
47 48
        elif dila_len == 1:
            dila_h = dila_w = params.dilation[0]
S
SunAhong1993 已提交
49
        else:
50 51 52
            assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                dila_len)
    return dila_h, dila_w, p_h, p_w, k_h, k_w, s_h, s_w
S
SunAhong1993 已提交
53 54


55 56 57 58
def get_strided_kernel_output_shape(params, input_shape, round_func):
    i_h = input_shape[2]
    i_w = input_shape[3]
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
S
SunAhong1993 已提交
59 60 61 62 63
        params)
    o_h = (i_h + 2 * pad_h - (dila_h *
                              (kernel_h - 1) + 1)) / float(stride_h) + 1
    o_w = (i_w + 2 * pad_w - (dila_w *
                              (kernel_w - 1) + 1)) / float(stride_w) + 1
64 65
    o_h = int(round_func(o_h))
    o_w = int(round_func(o_w))
S
SunAhong1993 已提交
66 67 68 69 70 71 72 73 74 75 76
    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape[1]
    return [[input_shape[0], c, o_h, o_w]]


def shape_convolution(layer, input_shape):
    params = layer.convolution_param
    return get_strided_kernel_output_shape(params, input_shape[0], math.floor)


def shape_deconvolution(layer, input_shape):
S
SunAhong1993 已提交
77 78 79

    h_i = input_shape[0][2]
    w_i = input_shape[0][3]
S
SunAhong1993 已提交
80 81

    params = layer.convolution_param
S
SunAhong1993 已提交
82
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
S
SunAhong1993 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        params)

    h_o = (h_i - 1) * stride_h - 2 * pad_h + dila_h * (kernel_h - 1) + 1
    w_o = (w_i - 1) * stride_w - 2 * pad_w + dila_w * (kernel_w - 1) + 1

    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape.channels
    return [[input_shape[0][0], c, h_o, w_o]]


def shape_pooling(layer, input_shape):
    params = layer.pooling_param
    global_pool = getattr(params, 'global_pooling', False)
    if global_pool:
        return [[input_shape[0][0], input_shape[0][1], 1, 1]]

    ceil_mode = getattr(params, 'ceil_mode', True)
    if ceil_mode is True:
        method = math.ceil
    else:
        method = math.floor
    return get_strided_kernel_output_shape(params, input_shape[0], method)


def shape_innerproduct(layer, input_shape):
    params = layer.inner_product_param
    return [[input_shape[0][0], params.num_output]]


def shape_lrn(layer, input_shape):
    return input_shape


def shape_relu(layer, input_shape):
    return input_shape


def shape_softmax(layer, input_shape):
    return input_shape


def shape_input(layer, input_shape):
    return [list(layer.input_param.shape[0].dim)]
S
SunAhong1993 已提交
126

S
SunAhong1993 已提交
127

S
SunAhong1993 已提交
128 129 130 131 132 133 134 135 136 137
def shape_memorydata(layer, input_shape):
    params = layer.memory_data_param
    shape = []
    shape.append(int(params.batch_size))
    shape.append(int(params.channels))
    shape.append(int(params.height))
    shape.append(int(params.width))
    return [shape]


S
SunAhong1993 已提交
138 139 140 141 142 143
def shape_concat(layer, input_shape):
    params = layer.concat_param
    axis = params.axis
    output_shape = None
    for shape in input_shape:
        if output_shape is None:
144 145 146
            output_shape = []
            for i in range(len(shape)):
                output_shape.append(shape[i])
S
SunAhong1993 已提交
147 148
        else:
            output_shape[axis] += shape[axis]
S
SunAhong1993 已提交
149 150 151 152 153
    return [output_shape]


def shape_slice(layer, input_shape):
    inshape = input_shape[0]
S
SunAhong1993 已提交
154 155

    top_len = len(layer.top)
S
SunAhong1993 已提交
156 157
    params = layer.slice_param
    axis = params.axis
S
SunAhong1993 已提交
158 159 160
    slice_dim = params.slice_dim
    if slice_dim != 1 and axis == 1:
        axis = slice_dim
S
SunAhong1993 已提交
161
    points = list(params.slice_point)
S
SunAhong1993 已提交
162 163 164 165 166 167 168 169
    count = inshape[axis]
    if len(points) == 0:
        assert count % top_len == 0, "the parameter of Slice is wrong"
        part = count / top_len
        t = part
        while t < count:
            points.append(int(t))
            t += part
S
SunAhong1993 已提交
170 171 172
    points = [0] + points + [count]
    output_shape = []
    for i in range(len(points)):
173 174 175
        shape = []
        for ii in range(len(inshape)):
            shape.append(inshape[ii])
S
SunAhong1993 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        size = points[i + 1] - points[i]
        shape[axis] = size
        output_shape.append(shape)
        if i == len(points) - 2:
            break
    return output_shape


def shape_prelu(layer, input_shape):
    return input_shape


def shape_sigmoid(layer, input_shape):
    return input_shape


def shape_absval(layer, input_shape):
    return input_shape


def shape_accuracy(layer, input_shape):
    return [[1]]


def shape_tanh(layer, input_shape):
    return input_shape


def shape_eltwise(layer, input_shape):
    return [input_shape[0]]


def shape_batchnorm(layer, input_shape):
    return input_shape


def shape_scale(layer, input_shape):
    return input_shape
S
SunAhong1993 已提交
214 215 216 217 218 219 220 221


def shape_reshape(layer, input_shape):
    def count(num_list):
        return reduce(lambda a, b: a * b, num_list)

    inshape = input_shape[0]
    params = layer.reshape_param
222 223
    axis = params.axis if hasattr(params, 'axis') else 0
    num_axes = params.num_axes if hasattr(params, 'num_axes') else -1
S
SunAhong1993 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    if inshape[0] == -1:
        inshape[0] = 1
    input_count = count(inshape)

    input_num_axes = len(inshape)

    input_start_axis = axis
    start_axis = input_start_axis if input_start_axis >= 0 \
            else input_num_axes + input_start_axis + 1

    assert start_axis >= 0, "[Reshape]axis %d out of range" % (input_start_axis)
    assert start_axis <= input_num_axes, "[Reshape]axis %d out of range for %d-D input data"\
            % (input_start_axis, input_num_axes)

    assert num_axes >= -1, "[Reshape]num_axes must be >= 0, or -1 for all"

    end_axis = input_num_axes if num_axes == -1 else start_axis + num_axes
    assert end_axis <= input_num_axes, "end_axis[%d] = axis[%d] + num_axes[%d] is out of range"\
            % (end_axis, start_axis, num_axes)

    num_axes_replaced = end_axis - start_axis
    num_axes_retained = input_num_axes - num_axes_replaced
246
    num_new_axes = len(list(params.shape.dim))
S
SunAhong1993 已提交
247 248 249 250 251 252
    outshape = []

    for i in range(start_axis):
        outshape.append(inshape[i])

    for i in range(num_new_axes):
253
        outshape.append(params.shape.dim[i])
S
SunAhong1993 已提交
254 255 256 257 258 259 260 261 262 263 264

    for i in range(end_axis, input_num_axes):
        outshape.append(inshape[i])

    assert len(outshape) == num_axes_retained + num_new_axes,\
            "[Reshape]invalid dims of output shape[%s]" % (str(outshape))

    inferred_axis = -1
    copy_axes = []
    constant_count = 1
    for i in range(num_new_axes):
265
        top_dim = params.shape.dim[i]
S
SunAhong1993 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        if top_dim == 0:
            copy_axes.append(i)
            copy_axis_index = start_axis + i
            outshape[copy_axis_index] = inshape[copy_axis_index]
        elif top_dim == -1:
            assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
            inferred_axis = i
        else:
            constant_count *= top_dim

    if inferred_axis >= 0:
        explicit_count = constant_count
        l = inshape[0:start_axis]
        if len(l) > 0:
            explicit_count *= count(l)
        l = inshape[end_axis:]
        if len(l) > 0:
            explicit_count *= count(l)
        for i in range(len(copy_axes)):
            explicit_count *= outshape[start_axis + copy_axes[i]]
        assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
                "must be divisible by product of the specified dimensions[%d] "\
                % (input_count, explicit_count)
289
        outshape[start_axis + inferred_axis] = int(input_count / explicit_count)
S
SunAhong1993 已提交
290 291 292 293

    output_count = count(outshape)
    assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
        output_count, input_count)
294
    outshape[0] = -1
S
SunAhong1993 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    return [outshape]


def shape_argmax(layer, input_shape):
    inshape = input_shape[0]
    params = layer.argmax_param
    out_max_val = params.out_max_val if hasattr(params, out_max_val) else False
    top_k = params.top_k if hasattr(params, top_k) else 1
    axis = parmas.axis if hasattr(params, axis) else -1
    if axis < 0:
        axis += len(inshape)
    assert (axis + 1 == len(inshape)
            ), 'only can be applied on the last dimension[axis:%d, %s] now,'\
                    'make sure you have set axis param in xxx.prototxt file' \
                    % (axis, str(inshape))

    outshape = inshape
    outshape[-1] = top_k
    if out_max_val is True:
        outshape[-1] *= 2
    return [outshape]


def shape_crop(layer, input_shape):
    assert len(input_shape) == 2, "the number of crop's inputs must be 2"
    return [input_shape[1]]


def shape_flatten(layer, input_shape):
    assert len(input_shape) == 1, "the number of flatten's inputs must be 1"
325
    inshape = input_shape[0]
S
SunAhong1993 已提交
326 327 328 329
    params = layer.flatten_param
    start_axis = params.axis
    end_axis = params.end_axis
    if start_axis < 0:
330
        start_axis += len(inshape)
S
SunAhong1993 已提交
331
    if end_axis < 0:
332
        end_axis += len(inshape) + 1
S
SunAhong1993 已提交
333 334
    assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\
            % (start_axis, end_axis)
335 336 337 338 339 340
    output_shape = inshape[0:start_axis]
    if len(inshape[start_axis:end_axis]) != 0:
        flat_sz = reduce(lambda a, b: a * b, inshape[start_axis:end_axis])
        output_shape += [flat_sz]
    output_shape += inshape[end_axis:len(inshape)]
    output_shape[0] = -1
S
SunAhong1993 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354
    return [output_shape]


def shape_power(layer, input_shape):
    return input_shape


def shape_reduction(layer, input_shape):
    params = layer.reduction_param
    axis = params.axis
    if axis < 0:
        axis += len(input_shape[0]) + 1
    assert axis <= len(input_shape[0]), 'invalid axis[%d] error' % (axis)
    return [input_shape[0:axis]]