opset.py 108.1 KB
Newer Older
W
wjj19950828 已提交
1
# Copyright (c) 2022  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
48 49
                             is_remove=True,
                             rename_mapper=None):
50
    '''
51 52 53 54
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
55
        origin_name(String): Name of parameter to rename or remove.
56 57
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
58
            naming rule of parameters. Default: None.
59
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
60
        rename_mapper: Solved the same data is used for multiple OPs, key is old_name, value is new_name.
61 62
    Returns:
        None
63
    '''
64 65 66
    if rename_mapper is not None and origin_name in rename_mapper:
        origin_name = rename_mapper[origin_name]
        is_remove = False
C
Channingss 已提交
67
    if origin_name not in weights:
68
        raise KeyError('{} not a key in {}'.format(origin_name, weights.keys()))
Y
yeliang2258 已提交
69 70 71 72 73
    if is_remove:
        # remove weight
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
C
Channingss 已提交
74 75 76
    if target_name is not None:
        # rename weight
        weights[target_name] = data
77
        rename_mapper[origin_name] = target_name
C
Channingss 已提交
78

79

S
SunAhong1993 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


W
wjj19950828 已提交
95
def _get_same_padding(in_size, kernel_size, stride, autopad):
S
SunAhong1993 已提交
96 97 98 99
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
W
wjj19950828 已提交
100 101 102 103
    if autopad == "SAME_UPPER":
        return [pad0, pad1]
    if autopad == "SAME_LOWER":
        return [pad1, pad0]
S
SunAhong1993 已提交
104 105 106 107 108 109 110 111


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
112
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
113
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
114 115 116 117 118 119
        else:
            return res

    return run_mapping


W
wjj19950828 已提交
120
class OpSet():
S
SunAhong1993 已提交
121
    def __init__(self, decoder, paddle_graph):
W
wjj19950828 已提交
122
        super(OpSet, self).__init__()
S
SunAhong1993 已提交
123 124 125 126 127
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
128
        self.done_weight_list = list()
129 130 131
        # solve for same data is used as an argument to multiple OPs.
        # PR link(wangjunjie06): https://github.com/PaddlePaddle/X2Paddle/pull/728
        self.rename_mapper = dict()
W
wjj19950828 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        self.elementwise_ops = {
            'Add': 'paddle.add',
            'Div': 'paddle.divide',
            'Sub': 'paddle.subtract',
            'Mul': 'paddle.multiply',
            'Pow': 'paddle.pow',
            'Less': 'paddle.less_than',
            'LessOrEqual': 'paddle.less_equal',
        }

        self.directly_map_ops = {
            'Ceil': ['paddle.ceil'],
            # reduce function
            'ReduceMean': [
                'paddle.mean', dict(
                    axes='axis', keepdims='keepdim'), dict(
                        axes=None, keepdims=True)
            ],
            'ReduceMin': [
                'paddle.min', dict(
                    axes='axis', keepdims='keepdim'), dict(
                        axes=None, keepdim=True)
            ],
            'ReduceMax': [
                'paddle.max', dict(
                    axes='axis', keepdims='keepdim'), dict(
                        axes=None, keepdim=True)
            ],
            'ReduceProd': [
                'paddle.prod', dict(
                    axes='axis', keepdims='keepdim'), dict(
                        axes=None, keepdim=True)
            ],
            # active function
            'Relu': ['paddle.nn.ReLU'],
            'LeakyRelu': [
                'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
                dict(negative_slope=.01)
            ],
            'Elu':
            ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
            'ThresholdedRelu': [
                'paddle.nn.functional.thresholded_relu',
                dict(alpha='threshold'), dict(alpha=1.)
            ],
            'Tanh': ['paddle.nn.Tanh'],
            'Sigmoid': ['paddle.nn.Sigmoid'],
            'Softsign': ['paddle.nn.Softsign'],
            'Softplus': [
                'paddle.nn.Softplus', dict(threshold='threshold'),
                dict(threshold=float(sys.maxsize))
            ],
            'Exp': ['paddle.exp'],
            'Log': ['paddle.log'],
            'LogSoftmax': [
                'paddle.nn.functional.log_softmax', dict(axis='axis'),
                dict(axis=1)
            ],
            'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
            'Sqrt': ['paddle.sqrt'],
            'Floor': ['paddle.floor'],
            'Abs': ['paddle.abs'],
            'Erf': ['paddle.erf'],
            'Sin': ['paddle.sin'],
            'Cos': ['paddle.cos'],
        }
S
SunAhong1993 已提交
198 199 200 201 202 203

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
219
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
220 221
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
222
            output_name = node.name
S
SunAhong1993 已提交
223
            layer_outputs = [op_name, output_name]
224

S
SunAhong1993 已提交
225 226
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
227
                inputs={"x": input.name},
S
SunAhong1993 已提交
228 229 230 231 232
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
233 234
                inputs={"x": input.name},
                outputs=[node.name],
235 236
                **layer_attrs)

S
SunAhong1993 已提交
237 238 239 240 241
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
242
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
243
        self.paddle_graph.add_layer(
244
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
245 246 247 248 249 250 251 252 253 254 255 256

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
257
            outputs=[node.name],
S
SunAhong1993 已提交
258 259
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
260 261 262 263 264 265 266

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
Y
yeliang2258 已提交
267

S
fix  
SunAhong1993 已提交
268
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
W
WJJ1995 已提交
269 270
            if node.weight == float('inf') or node.weight == float('-inf'):
                node.weight = string(node.weight)
S
SunAhong1993 已提交
271
            self.paddle_graph.add_layer(
272 273
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
274
                outputs=[node.name],
S
SunAhong1993 已提交
275 276 277 278
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
279
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
280 281 282
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
283
                outputs=[node.name],
S
SunAhong1993 已提交
284
                shape=shape,
S
SunAhong1993 已提交
285
                attr=string(node.name),
S
SunAhong1993 已提交
286
                dtype=string(dtype),
287
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
304
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
305
        attrs = dict()
W
WJJ1995 已提交
306
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
307 308 309 310
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
311
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
312
                # which is the same as the rank of input.
W
WJJ1995 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                scale_values = _const_weight_or_none(val_scales)
                if scale_values is not None:
                    attrs['scale_factor'] = self.weights[
                        val_scales.name].tolist()[2:]
                else:
                    var_nc, var_hw = val_scales.name + '_nc', val_scales.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_scales.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    inputs['scale_factor'] = var_hw
                mode = node.get_attr('mode', 'nearest')
                attrs.update({
                    "align_corners": False,
                    "mode": string(mode),
                    "align_mode": 1
                })
                if mode == "linear" and len(val_x_shape) == 4:
                    attrs["mode"] = string("bilinear")
                self.paddle_graph.add_layer(
                    kernel="paddle.nn.functional.interpolate",
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
S
SunAhong1993 已提交
340 341
            elif len(node.layer.input) == 3:
                # opset 11
Q
qqj1130247885 已提交
342 343 344 345 346 347 348
                try:
                    #to avoid the error causeed by NULL value of resize inputs.
                    val_scales = self.graph.get_input_node(
                        node, idx=2, copy=True)
                except:
                    val_scales = self.graph.get_input_node(
                        node, idx=1, copy=True)
349
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
350
                # which is the same as the rank of input.
351 352
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
353 354 355
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
W
WJJ1995 已提交
356
                size_values = _const_weight_or_none(val_sizes)
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
W
WJJ1995 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
                    if size_values is not None:
                        attrs["size"] = [size_values[2], size_values[3]]
                    else:
                        var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                        self.paddle_graph.add_layer(
                            'paddle.split',
                            inputs={"x": val_sizes.name},
                            outputs=[var_nc, var_hw],
                            num_or_sections=[2, 2],
                            axis=0)
                        self.paddle_graph.add_layer(
                            "paddle.cast",
                            inputs={"x": var_hw},
                            outputs=[var_hw],
                            dtype=string('int32'))
                        inputs['size'] = var_hw
                    attrs.update({
418 419
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
W
WJJ1995 已提交
420
                    })
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
436
                return
S
SunAhong1993 已提交
437
        elif node.layer_type == 'Upsample':
Y
yeliang2258 已提交
438 439 440 441 442 443 444 445 446 447 448 449
            if len(node.layer.input) == 2:
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                self.paddle_graph.add_layer(
                    "paddle.slice",
                    inputs={"input": val_scales.name},
                    outputs=[val_scales.name],
                    axes=[0],
                    starts=[2],
                    ends=[4])
                inputs['scale_factor'] = val_scales.name
            else:
                val_scales = node.get_attr('scales')[2:]
450

S
SunAhong1993 已提交
451
        mode = node.get_attr('mode', 'nearest')
452 453 454 455 456
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
Y
yeliang2258 已提交
457 458
        if len(node.layer.input) == 1:
            attrs["scale_factor"] = val_scales
S
SunAhong1993 已提交
459 460
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
461 462 463 464 465 466
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
467 468 469
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
470
            outputs=[node.name],
S
SunAhong1993 已提交
471
            **attrs)
472

W
WJJ1995 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
    @print_mapping_info
    def CumSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = self.graph.get_input_node(node, idx=1, copy=True)
        axis_values = _const_weight_or_none(axis)
        assert axis_values is not None, 'Axis only support constant tensor!'
        layer_attrs = {'axis': axis_values}
        self.paddle_graph.add_layer(
            'paddle.cumsum',
            inputs={"x": val_x.name},
            outputs=[node.name],
            **layer_attrs)

S
SunAhong1993 已提交
486 487 488 489 490 491 492
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
493 494
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
495 496 497 498
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
499 500
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
501
            min=0.0,
502 503
            max=1.0)

S
SunAhong1993 已提交
504 505 506 507 508 509 510 511
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
512 513 514 515
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
516 517 518 519 520 521 522 523 524 525

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
526 527 528 529 530 531
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
532 533 534 535 536 537 538 539 540 541 542 543 544 545
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
546 547 548 549 550 551 552
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
553
            'custom_layer:ROIAlign',
W
wjj19950828 已提交
554 555 556 557 558
            inputs={
                'input': val_x.name,
                'rois': val_rois.name,
                'rois_num': val_rois_num
            },
S
SunAhong1993 已提交
559
            outputs=[node.name],
S
SunAhong1993 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
575
            'custom_layer:ROIPooling',
S
SunAhong1993 已提交
576 577 578
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
579 580 581 582 583 584
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
585 586 587 588 589 590 591 592
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
593
        mode = node.get_attr('mode', 'constant')
594 595
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
596 597 598
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
599
        assume_pad = False
S
SunAhong1993 已提交
600 601
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
602 603 604
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
605
        else:
S
fix  
SunAhong1993 已提交
606 607 608
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
609 610
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
611
            if len(pads) == 10 and sum(pads) == 0:
612
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
613
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
614
                if data_shape:
615 616
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
617
                if output_shape:
618 619
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
620 621 622 623
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
624
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
625 626 627
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
628 629
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
630
                    if output_shape:
631 632
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
633 634 635
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
636 637
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
638 639
                        layer_attrs['pad'] = paddings
                    else:
640 641
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
642
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
643
                if data_shape:
644 645
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
646
                if output_shape:
647 648
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
649
                if assume_pad:
S
for pad  
SunAhong1993 已提交
650
                    paddle_op = 'paddle.nn.Pad2D'
W
wjj19950828 已提交
651
                    # x1_begin,x2_begin,x3_begin,x4_begin,x1_end,x2_end,x3_end,x4_end->x1_begin,x1_end,x2_begin,x2_end,x3_begin,x3_end,x4_begin,x4_end
S
fix  
SunAhong1993 已提交
652
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
653
                        (2, -1)).transpose().astype("int32")
W
wjj19950828 已提交
654 655
                    if mode == 'constant':
                        paddings = paddings.flatten().tolist()
S
for pad  
SunAhong1993 已提交
656 657
                        layer_attrs['padding'] = paddings
                    else:
W
wjj19950828 已提交
658 659 660 661 662 663 664 665 666 667
                        paddings = np.flip(paddings, axis=0).flatten().tolist()
                        if sum(paddings[:4]) == 0:
                            paddings = paddings[4:]
                            layer_attrs['padding'] = paddings
                        else:
                            layer_attrs["pad"] = paddings
                            paddle_op = "custom_layer:PadAllDim4WithOneInput"
                else:
                    paddle_op = 'paddle.nn.functional.pad'
                    layer_attrs["pad"] = np.array(pads).tolist()
S
SunAhong1993 已提交
668
            else:
W
wjj19950828 已提交
669
                pad_data_temp = pads[0::2]
670
                pad_data_all = []
W
wjj19950828 已提交
671 672 673
                for i in range(len(pad_data_temp)):
                    pad_data_all.append(pads[i])
                    pad_data_all.append(pads[len(pad_data_temp) + i])
674 675 676 677 678 679 680 681 682

                layer_attrs["pad"] = pad_data_all
                self.paddle_graph.add_layer(
                    'paddle.nn.functional.pad',
                    inputs={'x': val_x.name},
                    outputs=layer_outputs[1:],
                    **layer_attrs)
                return

S
SunAhong1993 已提交
683
            self.paddle_graph.add_layer(
684 685 686 687
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
688
                **layer_attrs)
S
fix  
SunAhong1993 已提交
689
            if not op_independent:
S
SunAhong1993 已提交
690
                return node.name + '_paded'
S
SunAhong1993 已提交
691
        else:
S
fix  
SunAhong1993 已提交
692 693
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
694
                if data_shape:
695 696
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
697
                if output_shape:
698 699
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
700 701 702 703 704 705 706 707
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
708 709 710
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
711 712 713 714 715 716
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
717 718
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
719
                    if output_shape:
720 721
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
722 723 724
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
725 726 727 728
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
729 730 731 732 733 734
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
735 736
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
737
                if output_shape:
738 739
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
740 741
                if assume_pad:
                    self.paddle_graph.add_layer(
742 743 744 745
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
746 747 748
                        value=value,
                        mode=string(mode))
            else:
749
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
750 751
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
752 753 754 755 756

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
757
        if axes is None:
W
WJJ1995 已提交
758 759 760
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
Y
fix  
yeliang2258 已提交
761
        if len(val_x.out_shapes[0]) == 0 and len(axes) == 1 and axes[0] == 0:
W
WJJ1995 已提交
762 763 764 765 766
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1])
S
SunAhong1993 已提交
767
        else:
W
WJJ1995 已提交
768 769 770 771 772
            self.paddle_graph.add_layer(
                'paddle.unsqueeze',
                inputs={"x": val_x.name},
                axis=axes,
                outputs=[node.name])
S
SunAhong1993 已提交
773 774 775 776 777 778 779 780

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
781 782 783
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
805
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
806 807 808
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
W
WJJ1995 已提交
809 810
            if value == float('inf') or value == float('-inf'):
                value = string(value)
S
SunAhong1993 已提交
811
            self.paddle_graph.add_layer(
812 813
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
814
                outputs=[node.name],
S
SunAhong1993 已提交
815 816 817 818 819
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
820
            self.weights[node.name] = value
S
SunAhong1993 已提交
821 822 823
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
824
                outputs=[node.name],
S
SunAhong1993 已提交
825
                shape=shape,
S
SunAhong1993 已提交
826
                attr=string(node.name),
S
SunAhong1993 已提交
827 828 829 830 831 832 833 834 835 836 837 838 839 840
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
841
        output_name = node.name
S
SunAhong1993 已提交
842 843 844 845 846
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
847 848
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
849 850 851 852 853
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
854
        if dim == 3:
S
SunAhong1993 已提交
855 856 857 858 859 860
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
861 862 863
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
864
        self.paddle_graph.add_layer(
865 866 867
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
868 869 870 871 872 873 874
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
875
        name_ones = node.name + '_ones'
Y
yeliang2258 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888
        shape_values = _const_weight_or_none(val_shape)
        if shape_values is None:
            attr_ones = {
                'shape': val_shape.name,
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
        else:
            attr_ones = {
                'shape': shape_values.tolist(),
                'dtype': string(val_x_dtype),
                'fill_value': 1
            }
S
SunAhong1993 已提交
889
        self.paddle_graph.add_layer(
890 891
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
892
        self.paddle_graph.add_layer(
893
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
894

Y
yeliang2258 已提交
895 896 897 898 899 900 901 902
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
903 904 905 906
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
W
WJJ1995 已提交
907 908 909
        indices_values = _const_weight_or_none(indices, necessary=True)
        if isinstance(indices_values, np.ndarray):
            indices_values = indices_values.tolist()
S
SunAhong1993 已提交
910
        indices_shape = indices.out_shapes[0]
W
WJJ1995 已提交
911
        val_x_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
912
        axis = node.get_attr('axis', 0)
W
WJJ1995 已提交
913 914 915
        if len(indices_shape) == 1 or \
            (indices_values is not None and isinstance(indices_values, int)) or \
            (indices_values is not None and len(indices_values) == 1):
S
SunAhong1993 已提交
916 917
            self.paddle_graph.add_layer(
                'paddle.gather',
W
WJJ1995 已提交
918
                inputs={'x': val_x.name,
S
SunAhong1993 已提交
919
                        'index': indices.name},
920
                outputs=[node.name],
W
WJJ1995 已提交
921 922 923
                axis=axis)
            # deal with indice is scalar(0D) Tensor
            if isinstance(indices_values, int) and len(val_x_shape) > 1:
S
SunAhong1993 已提交
924 925
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
926 927
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
928
                    axis=[axis])
W
WJJ1995 已提交
929 930 931
        else:
            # if val_x is DataNode, convert gather to embedding
            if axis == 0 and isinstance(val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
932
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
933 934
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
935
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
936
                    outputs=[indices_cast],
S
SunAhong1993 已提交
937 938
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
939
                output_name = node.name
S
SunAhong1993 已提交
940
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
941
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
942 943 944 945
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
W
WJJ1995 已提交
946 947
                    num_embeddings=val_x_shape[0],
                    embedding_dim=val_x_shape[1])
S
SunAhong1993 已提交
948 949 950
            else:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
951
                    inputs={"x": indices.name},
W
WJJ1995 已提交
952 953 954
                    outputs=[indices.name + "_reshape"],
                    shape=[-1])
                gather_1d = node.name + '_1D'
S
SunAhong1993 已提交
955 956
                self.paddle_graph.add_layer(
                    'paddle.gather',
W
WJJ1995 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
                    inputs={
                        'x': val_x.name,
                        'index': indices.name + "_reshape"
                    },
                    outputs=[gather_1d],
                    axis=axis)
                # if shape is known
                if len(indices_shape) != 0 and len(val_x_shape) != 0:
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=val_x_shape[:axis] + indices_shape +
                        val_x_shape[axis + 1:])
                else:
                    all_shape_name = list()
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": val_x.name},
                        outputs=[val_x.name + "_shape"])
                    self.paddle_graph.add_layer(
                        kernel="paddle.shape",
                        inputs={"input": indices.name},
                        outputs=[indices.name + "_shape"])
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_start"],
                        axes=[0],
                        starts=[0],
                        ends=[axis])
                    all_shape_name.append(val_x.name + "_shape_slice_start")
                    all_shape_name.append(indices.name + "_shape")
                    self.paddle_graph.add_layer(
                        "paddle.slice",
                        inputs={"input": val_x.name + "_shape"},
                        outputs=[val_x.name + "_shape_slice_end"],
                        axes=[0],
                        starts=[axis + 1],
                        ends=[2147483647])
                    all_shape_name.append(val_x.name + "_shape_slice_end")
                    self.paddle_graph.add_layer(
                        'paddle.concat',
                        inputs={"x": all_shape_name},
                        outputs=[node.name + "_all_shape"],
                        axis=0)
                    self.paddle_graph.add_layer(
                        'paddle.reshape',
                        inputs={'x': gather_1d},
                        outputs=[node.name],
                        shape=node.name + "_all_shape")
S
SunAhong1993 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
1017 1018 1019 1020 1021
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
1022
                outputs=[node.name])
S
SunAhong1993 已提交
1023
        else:
S
SunAhong1993 已提交
1024
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
1025 1026 1027
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1028 1029
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
1030 1031
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
1032
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
1033 1034
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
1035
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1036 1037 1038 1039 1040
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1041 1042
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
1043 1044
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
1045 1046
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
1047 1048 1049
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1050
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1051 1052 1053 1054 1055 1056 1057
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1058
                    'index': indices.name,
S
SunAhong1993 已提交
1059 1060 1061
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1062
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1063 1064 1065
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1066
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1067 1068 1069
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1070
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1071 1072 1073 1074 1075 1076
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1077
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1078 1079
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1080
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1081 1082 1083 1084 1085 1086 1087
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1088
                outputs=[node.name])
S
SunAhong1993 已提交
1089 1090 1091 1092 1093 1094 1095

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1096 1097 1098 1099 1100
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1101 1102 1103
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1104
            outputs=[node.name],
S
SunAhong1993 已提交
1105 1106 1107 1108 1109 1110 1111
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
W
WJJ1995 已提交
1112 1113 1114 1115 1116 1117
        if val_x.dtype == 'uint8':
            self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": val_x.name},
                outputs=[val_x.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
1118 1119 1120 1121
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1122 1123
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1124
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1125 1126 1127 1128 1129
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1130
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1131 1132
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1133 1134
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1135
                steps = _const_weight_or_none(steps).tolist()
1136

S
SunAhong1993 已提交
1137 1138
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1139 1140
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1141
            }
S
SunAhong1993 已提交
1142
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1143 1144 1145
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
W
WJJ1995 已提交
1146 1147 1148
                    if len(val_x.out_shapes[0]) != 0 and starts_value[
                            idx] >= val_x.out_shapes[0][axes[
                                idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1149 1150 1151 1152
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1153

S
SunAhong1993 已提交
1154 1155 1156 1157 1158 1159 1160
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1161
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1162 1163
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1164
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1165 1166 1167 1168
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1169
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1170 1171
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1172 1173
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1174
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1175 1176 1177 1178 1179 1180 1181
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
Y
yeliang2258 已提交
1182 1183 1184 1185
            output_shape = val_x.out_shapes[0]

            if axes is None:
                axes = [i for i in range(len(starts))]
S
SunAhong1993 已提交
1186 1187 1188 1189 1190 1191 1192 1193
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1194 1195 1196
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1197 1198 1199
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1200 1201 1202
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1203
                **layer_attrs)
W
WJJ1995 已提交
1204 1205 1206 1207 1208 1209
        if val_x.dtype == 'uint8':
            self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('uint8'))
S
SunAhong1993 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
W
WJJ1995 已提交
1222 1223
            if value == float('inf') or value == float('-inf'):
                value = string(value)
1224
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1225
            self.paddle_graph.add_layer(
1226 1227
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1228
                outputs=[node.name],
S
SunAhong1993 已提交
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
                **layer_attrs)

    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1243

S
SunAhong1993 已提交
1244
            self.paddle_graph.add_layer(
1245 1246 1247
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1248 1249
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1265 1266 1267 1268 1269 1270
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1396 1397 1398 1399 1400 1401
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1402 1403
        if split is None:
            split_num = len(node.layer.output)
Q
qqj1130247885 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
            try:
                #split is an input of this node
                split_node = self.graph.get_input_node(node, idx=1, copy=True)
                split_value = _const_weight_or_none(split_node)
                layer_attrs = {
                    'num_or_sections': split_value.tolist(),
                    'axis': axis,
                }
            except:
                layer_attrs = {
                    'num_or_sections': split_num,
                    'axis': axis,
                }
Y
yeliang2258 已提交
1417 1418 1419
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1420
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1436
        else:
Y
yeliang2258 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1448
            else:
Y
yeliang2258 已提交
1449
                outputs_list.append(node.name)
W
wjj19950828 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
            if len(split) > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1474 1475
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1476 1477 1478 1479 1480
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1481 1482
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1483 1484 1485 1486 1487 1488
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1489 1490
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1491
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1492 1493 1494 1495 1496 1497
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1498 1499
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1500 1501
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1502
                outputs=[node.name])
S
SunAhong1993 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1517 1518 1519
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1520 1521 1522 1523 1524
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1525 1526 1527 1528
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
W
wjj19950828 已提交
1547
                                      strides[0], auto_pad)
S
SunAhong1993 已提交
1548
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
W
wjj19950828 已提交
1549
                                      strides[1], auto_pad)
S
SunAhong1993 已提交
1550 1551
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1552 1553 1554 1555 1556
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1557
        layer_attrs = {
S
SunAhong1993 已提交
1558 1559 1560
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1561 1562 1563 1564
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1565 1566 1567
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1568 1569 1570 1571 1572 1573 1574 1575
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1576
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1577 1578 1579 1580 1581
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1582 1583 1584
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1585 1586 1587 1588 1589
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1590
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1591 1592
        axis = node.get_attr('axis', 1)
        if axis == 0:
W
WJJ1995 已提交
1593 1594 1595 1596 1597
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
                shape=[1, -1])
S
SunAhong1993 已提交
1598
        else:
W
WJJ1995 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
            if len(output_shape) != 0:
                shape_list = [1, 1]
                for s in output_shape[:axis]:
                    shape_list[0] *= s
                for s in output_shape[axis:]:
                    shape_list[1] *= s
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=shape_list)
            else:
                # flatten + reshape
                self.paddle_graph.add_layer(
                    "paddle.flatten",
                    inputs={"input": val_x.name},
                    outputs=[val_x.name + "_flatten"],
                    start_axis=[0],
                    stop_axis=[axis])
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_x.name + "_flatten"},
                    outputs=[node.name],
                    shape=[0, -1])
S
SunAhong1993 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1634
        val_mm = node.name + '_mm'
1635
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1646
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1647 1648 1649

        if beta != 0:
            if beta == 1.:
1650
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1651
                self.paddle_graph.add_layer(
1652
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1653
            else:
S
SunAhong1993 已提交
1654
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1655 1656
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1657
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1658 1659 1660 1661
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1662
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1663 1664 1665 1666 1667

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1668 1669 1670 1671
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1672
        }
1673 1674
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1675 1676 1677 1678

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1679 1680
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1681 1682
            }
            self.paddle_graph.add_layer(
1683
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1684 1685 1686 1687 1688 1689 1690

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1691
        inputs_dict = {"x": val_x.name, "y": val_y.name}
W
WJJ1995 已提交
1692 1693
        if len(y_shape) != 0 and y_shape[0] == 1 and len(
                x_shape) != 0 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1694
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1695 1696
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1697
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1698 1699 1700 1701
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1702
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1703 1704
        else:
            self.paddle_graph.add_layer(
1705
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1706 1707 1708 1709

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1710
        output_name = node.name
S
SunAhong1993 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        # solved the same data is used as an argument to multiple OPs.
        _rename_or_remove_weight(
            self.weights,
            val_scale.name,
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_b.name,
            op_name + '.bias',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_var.name,
            op_name + '._variance',
            rename_mapper=self.rename_mapper)
        _rename_or_remove_weight(
            self.weights,
            val_mean.name,
            op_name + '._mean',
            rename_mapper=self.rename_mapper)
C
Channingss 已提交
1743

S
SunAhong1993 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1754 1755 1756
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1757 1758 1759 1760 1761
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1762 1763 1764 1765
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1766
        self.paddle_graph.add_layer(
1767
            "paddle.transpose",
S
SunAhong1993 已提交
1768
            inputs={"x": val_x.name},
1769
            outputs=[node.name],
S
SunAhong1993 已提交
1770 1771 1772 1773 1774
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1775
        output_name = node.name
S
SunAhong1993 已提交
1776 1777 1778 1779 1780 1781
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1782
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1783 1784
            mode = 'all'

S
SunAhong1993 已提交
1785 1786 1787
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1788 1789
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1790 1791 1792 1793
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1794 1795
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1796 1797 1798
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1799 1800
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1801
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1802 1803
            self.paddle_graph.add_layer(
                "paddle.multiply",
1804 1805
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1806 1807 1808
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1809 1810 1811 1812
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1813
                outputs=[output_name])
S
SunAhong1993 已提交
1814
        else:
S
fix  
SunAhong1993 已提交
1815
            if mode == 'channel':
S
SunAhong1993 已提交
1816
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1817 1818
                if slope_data is None:
                    self.paddle_graph.add_layer(
1819 1820
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1821 1822 1823
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1824
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1825
                        inputs={"x": val_x.name,
1826
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1827 1828
                        outputs=[node.name])
                    return
C
Channingss 已提交
1829
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1830
                if len(shape_slope) > 1:
1831 1832
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1833 1834 1835
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1836
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1837
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1838
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1839
            self.paddle_graph.add_layer(
1840 1841 1842
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1843
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1844 1845 1846 1847 1848

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
W
WJJ1995 已提交
1849 1850 1851 1852 1853
        if axes is None:
            axes_node = self.graph.get_input_node(node, idx=1, copy=True)
            axes = _const_weight_or_none(axes_node, necessary=True)
        # deal with scalar(0D) tensor
        if len(val_x.out_shapes[0]) <= 1 and len(axes) == 1 and axes[0] == 0:
S
SunAhong1993 已提交
1854 1855
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1856 1857
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1858 1859 1860
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1861 1862 1863
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1864 1865 1866 1867 1868 1869 1870 1871
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1872 1873 1874
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1875 1876 1877 1878 1879 1880 1881

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1882 1883
            inputs={'x': val_x.name,
                    'y': val_y.name},
1884
            outputs=[node.name])
S
SunAhong1993 已提交
1885 1886 1887 1888 1889 1890 1891 1892

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

        self.paddle_graph.add_layer(
W
WJJ1995 已提交
1893 1894 1895 1896 1897 1898
            "paddle.where",
            inputs={
                'condition': condition.name,
                'x': val_x.name,
                'y': val_y.name
            },
S
SunAhong1993 已提交
1899
            outputs=[node.name])
S
SunAhong1993 已提交
1900 1901 1902 1903

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
W
wjj19950828 已提交
1904 1905 1906 1907 1908 1909 1910
        self.paddle_graph.add_layer(
            "paddle.nonzero",
            inputs={"x": val_x.name},
            outputs=[val_x.name],
            as_tuple=True)
        self.paddle_graph.add_layer(
            "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1911 1912 1913 1914 1915

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1916
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1917 1918 1919 1920 1921 1922 1923 1924

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1925
            repeats = val_repeats.name
S
SunAhong1993 已提交
1926 1927 1928 1929
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1930
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1931
                    dtype=string("int32"))
1932
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1933 1934 1935 1936

        elif isinstance(repeats, int):
            repeats = [repeats]

1937 1938 1939
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1940 1941
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1942
            "name": string(node.name),
S
SunAhong1993 已提交
1943 1944
        }
        self.paddle_graph.add_layer(
1945 1946 1947 1948
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1949 1950 1951 1952

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1953
        output_name = node.name
S
SunAhong1993 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
W
wjj19950828 已提交
1974
                                      strides[0], auto_pad)
S
SunAhong1993 已提交
1975
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
W
wjj19950828 已提交
1976
                                      strides[1], auto_pad)
S
SunAhong1993 已提交
1977
            paddings = pad_h + pad_w
1978

S
SunAhong1993 已提交
1979 1980 1981 1982 1983 1984 1985
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1986 1987 1988
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1989 1990 1991 1992 1993
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1994
        output_name = node.name
S
SunAhong1993 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2008 2009 2010
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2011 2012
            output_size=output_shape[2:])

Y
yeliang2258 已提交
2013 2014
    @print_mapping_info
    def Neg(self, node):
Y
fix  
yeliang2258 已提交
2015
        import paddle
Y
yeliang2258 已提交
2016
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
Y
fix neg  
yeliang2258 已提交
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        v0, v1, v2 = paddle.__version__.split('.')
        if int(v0) >= 2 and int(v1) >= 2:
            self.paddle_graph.add_layer(
                "paddle.neg", inputs={'x': val_x.name}, outputs=[node.name])
        else:
            val_y = node.name + "_y"
            dtype = np.dtype(val_x.dtype)
            self.paddle_graph.add_layer(
                "paddle.full",
                inputs={},
                outputs=[val_y],
                dtype=string(dtype),
                shape=[1],
                fill_value=-1)
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={'x': val_x.name,
                        'y': val_y},
                outputs=[node.name])
Y
yeliang2258 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062

    @print_mapping_info
    def SpaceToDepth(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": val_x.name},
            outputs=[node.name],
            shape=[b, c, h // blocksize, blocksize, w // blocksize, blocksize])
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": node.name},
            outputs=[node.name],
            perm=[0, 3, 5, 1, 2, 4])
        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": node.name},
            outputs=[node.name],
            shape=[b, c * (blocksize**2), h // blocksize, w // blocksize])

    @print_mapping_info
    def GatherElements(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        axis = node.get_attr('axis')
        val_x_shape = val_x.out_shapes[0]
        indices_shape = indices.out_shapes[0]
        axis = axis if axis >= 0 else axis + len(val_x_shape)
        if axis == 0:
            axis_perm = [i for i in range(len(val_x_shape))]
            data_swaped = val_x.name
            index_swaped = indices.name
        else:
            axis_perm = [i for i in range(len(val_x_shape))]
            axis_perm[axis] = 0
            axis_perm[0] = axis
            data_swaped = val_x.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': val_x.name},
                perm=axis_perm,
                outputs=[data_swaped])
            index_swaped = indices.name + "_transpose"
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={'x': indices.name},
                perm=axis_perm,
                outputs=[index_swaped])
            temp = indices_shape[0]
            indices_shape[0] = indices_shape[axis]
            indices_shape[axis] = temp

        idx_tensors_per_axis_pre = [
            indices_shape[i] for i in range(len(indices_shape))
        ]
        name_list = list()
        for i in range(len(idx_tensors_per_axis_pre)):
            tensor_name = val_x.name + "_meshgrid_" + str(i)
            self.paddle_graph.add_layer(
                kernel="paddle.linspace",
                inputs={},
                outputs=[tensor_name],
                start=0,
                stop=idx_tensors_per_axis_pre[i] - 1,
                num=idx_tensors_per_axis_pre[i])
            name_list.append(tensor_name)

Y
yeliang2258 已提交
2106
        self.paddle_graph.add_layer(
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
            "paddle.meshgrid", inputs=name_list, outputs=name_list)

        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": index_swaped},
            outputs=[index_swaped],
            dtype=string("float32"))
        import copy
        copy_name_list = copy.copy(name_list)
        copy_name_list[0] = index_swaped
        new_name_list = list()
        for i in range(len(copy_name_list)):
            unsqueeze_name = copy_name_list[i] + "_unsqueeze"
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": copy_name_list[i]},
                axis=-1,
                outputs=[unsqueeze_name])
            new_name_list.append(unsqueeze_name)
        concat_name = val_x.name + "_concated_layer"
        self.paddle_graph.add_layer(
            "paddle.concat",
            inputs={'x': new_name_list},
            axis=-1,
            outputs=[concat_name])
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": concat_name},
            outputs=[concat_name],
            dtype=string("int32"))
        gather_nd_name = "gather_nd_layer"
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={'x': data_swaped,
                    "index": concat_name},
            outputs=[gather_nd_name])

        self.paddle_graph.add_layer(
            "paddle.transpose",
            inputs={'x': gather_nd_name},
            perm=axis_perm,
Y
yeliang2258 已提交
2148 2149
            outputs=[node.name])

S
SunAhong1993 已提交
2150 2151 2152
    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
2153
        output_name = node.name
S
SunAhong1993 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
2167 2168 2169
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
2170 2171 2172 2173
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
S
SunAhong1993 已提交
2174
        output_name = node.name
S
SunAhong1993 已提交
2175 2176
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2177 2178 2179 2180 2181 2182 2183 2184

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
W
wjj19950828 已提交
2203 2204
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()
S
SunAhong1993 已提交
2205 2206

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
W
wjj19950828 已提交
2207
            assert -1 not in input_shape, 'SAME_UPPER and SAME_LOWER does not yet support dynamic shapes'
S
SunAhong1993 已提交
2208
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
W
wjj19950828 已提交
2209
                                      strides[0], auto_pad)
S
SunAhong1993 已提交
2210
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
W
wjj19950828 已提交
2211
                                      strides[1], auto_pad)
S
SunAhong1993 已提交
2212 2213
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2214
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "padding": paddings,
                "dilation": dilations,
                "groups": num_groups,
            }
            layer_inputs['weight'] = val_w.name
            if has_bias:
                layer_inputs['bias'] = val_b.name

            paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
            self.paddle_graph.add_layer(
                paddle_op,
                inputs=layer_inputs,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2243
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2244 2245
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2246 2247 2248 2249 2250 2251
        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight',
            remove_weight,
            rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2252
        if has_bias:
C
Channingss 已提交
2253 2254
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
2255 2256 2257 2258 2259 2260 2261
                self.done_weight_list.append(val_b.name)
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                remove_bias,
                rename_mapper=self.rename_mapper)
S
SunAhong1993 已提交
2262 2263
        else:
            layer_attrs["bias_attr"] = False
2264 2265
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2266 2267 2268 2269
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2270 2271 2272
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2273
                shape=input_shape)
S
SunAhong1993 已提交
2274
        self.paddle_graph.add_layer(
2275 2276 2277
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2278 2279 2280 2281
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2282
        output_name = node.name
S
SunAhong1993 已提交
2283 2284
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
2285 2286 2287 2288 2289 2290 2291 2292

        if val_w.name in self.weights.keys():
            op_name = name_generator("conv_trans", self.nn_name2id)
        else:
            op_name = output_name

        layer_outputs = [op_name, output_name]

S
SunAhong1993 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2304
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2305 2306 2307 2308 2309 2310 2311

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

W
wjj19950828 已提交
2312 2313
        paddings = np.array(pads).reshape((2, -1)).transpose().astype("int32")
        paddings = paddings.flatten().tolist()
S
SunAhong1993 已提交
2314

W
wjj19950828 已提交
2315
        if len(output_size) != 0:
W
wjj19950828 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
            paddings = [0] * 4
            total_paddings = list()
            total_paddings.append((val_x.out_shapes[0][2] - 1) * strides[
                0] + dilations[0] * (kernel_shape[0] - 1) + 1 + out_padding[0] -
                                  output_size[0])
            total_paddings.append((val_x.out_shapes[0][3] - 1) * strides[
                1] + dilations[1] * (kernel_shape[1] - 1) + 1 + out_padding[1] -
                                  output_size[1])
            if auto_pad == "SAME_UPPER":
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] - total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] // 2
            else:
                for i in range(len(total_paddings)):
                    paddings[2 * i] = total_paddings[0] // 2
                    paddings[2 * i + 1] = total_paddings[0] - total_paddings[
                        0] // 2
        else:
            output_size = [0, 0]
S
SunAhong1993 已提交
2335

W
wjj19950828 已提交
2336 2337 2338 2339 2340 2341 2342 2343
            output_size[0] = (
                val_x.out_shapes[0][2] - 1
            ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                kernel_shape[0] - 1) + 1 + out_padding[0]
            output_size[1] = (
                val_x.out_shapes[0][3] - 1
            ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                kernel_shape[1] - 1) + 1 + out_padding[1]
2344

S
fix  
SunAhong1993 已提交
2345
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2346
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
        if val_w.name not in self.weights.keys():
            layer_attrs = {
                "stride": strides,
                "dilation": dilations,
                "padding": paddings,
                "groups": num_groups,
                "output_padding": out_padding
            }
            paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)

            inputs_dict['weight'] = val_w.name
            if len(node.layer.input) > 2:
                inputs_dict['bias'] = val_b.name

            self.paddle_graph.add_layer(
                paddle_op,
                inputs=inputs_dict,
                outputs=[node.name],
                **layer_attrs)
            return

S
SunAhong1993 已提交
2368
        layer_attrs = {
2369
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2370
            "out_channels": num_out_channels * num_groups,
2371
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2372 2373 2374
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2375
            "groups": num_groups,
2376 2377 2378 2379 2380 2381
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
2382 2383
            op_name + '.weight',
            rename_mapper=self.rename_mapper)
S
fix  
SunAhong1993 已提交
2384
        if val_b is not None:
2385 2386 2387 2388 2389
            _rename_or_remove_weight(
                self.weights,
                val_b.name,
                op_name + '.bias',
                rename_mapper=self.rename_mapper)
W
wjj19950828 已提交
2390 2391
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
2392
        self.paddle_graph.add_layer(
2393
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2394
            inputs=inputs_dict,
2395
            outputs=layer_outputs,
S
SunAhong1993 已提交
2396
            **layer_attrs)
2397

S
fix  
SunAhong1993 已提交
2398 2399 2400 2401 2402
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2403
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2404
        self.paddle_graph.add_layer(
2405 2406
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2407
            outputs=[node.name],
C
Channingss 已提交
2408 2409 2410
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2411 2412 2413
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2414
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2415 2416 2417 2418
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2419
            dtype=string('int64'))
S
SunAhong1993 已提交
2420
        self.paddle_graph.add_layer(
2421 2422
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2423 2424 2425
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2426 2427
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2428 2429
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2430 2431
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2432
        self.paddle_graph.add_layer(
2433
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2434 2435
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2436 2437
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2438 2439
                outputs=[node.name],
                dtype=string(node.dtype))
2440

S
SunAhong1993 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2451 2452 2453 2454 2455 2456
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2457 2458
            outputs=layer_outputs,
            axis=axis)
2459

S
SunAhong1993 已提交
2460 2461 2462 2463
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2464
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2465

2466 2467
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2468 2469 2470 2471 2472 2473
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2474
        have_bias = False
C
Channingss 已提交
2475
        if input_nums > 3 and node.layer.input[3] != '':
2476 2477
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2478
            have_bias = True
C
Channingss 已提交
2479 2480
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2481 2482
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2483 2484
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2485 2486
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2487 2488 2489 2490
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2491
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2492 2493
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2494 2495
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2496 2497 2498 2499
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2500
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2501 2502

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2503
        _rename_or_remove_weight(self.weights, input_weight.name)
2504
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2505 2506
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2507
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2508
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2509
        _rename_or_remove_weight(self.weights, bias.name)
2510 2511
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2512 2513 2514 2515 2516 2517

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2518
            slices = [w[:, x * n:y * n] for x, y in intervals]
2519
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2520

2521 2522 2523 2524
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2525

C
Channingss 已提交
2526
        weights = transform_weight_with_bias(
C
Channingss 已提交
2527 2528 2529 2530 2531
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2532
        yh_out = node.output(1)
C
Channingss 已提交
2533
        yc_out = node.output(2)
2534
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2549
        if direction == 'backward':
2550 2551 2552
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2553
        else:
C
Channingss 已提交
2554 2555 2556
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2557

C
Channingss 已提交
2558
        self.paddle_graph.add_layer(
2559 2560 2561 2562 2563
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2564 2565 2566 2567
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2568
            direction=string(direction),
C
Channingss 已提交
2569 2570 2571 2572 2573 2574
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2575
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2576 2577 2578 2579
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2580 2581
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2582 2583 2584 2585 2586 2587
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2588 2589 2590 2591
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
W
wjj19950828 已提交
2592 2593 2594
        k = _const_weight_or_none(val_k)
        if isinstance(k, (list, tuple, np.ndarray)):
            k = k[0]
W
wjj19950828 已提交
2595
        # If k can get the value directly, it is used as an attribute; otherwise it is used as an input tensor
W
wjj19950828 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        if k is not None:
            layer_attrs["k"] = k
            self.paddle_graph.add_layer(
                "paddle.topk",
                inputs={"x": val_x.name},
                outputs=[
                    "{}_p{}".format(node.layer_name, 0),
                    "{}_p{}".format(node.layer_name, 1)
                ],
                **layer_attrs)
        else:
            if val_k.dtype != "int32":
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_k.name},
                    outputs=[val_k.name],
                    dtype=string('int32'))
            self.paddle_graph.add_layer(
                "paddle.topk",
                inputs={"x": val_x.name,
                        "k": val_k.name},
                outputs=[
                    "{}_p{}".format(node.layer_name, 0),
                    "{}_p{}".format(node.layer_name, 1)
                ],
                **layer_attrs)
2622

S
add lrn  
SunAhong1993 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2633
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2634
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2635
            "paddle.nn.LocalResponseNorm",
2636 2637
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2638
            **layer_attrs)
2639

S
SunAhong1993 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2652
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2653 2654 2655 2656
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2657
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2658 2659 2660 2661
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2662
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2663 2664 2665 2666 2667
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2668
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2669 2670 2671 2672
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2673
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2674 2675 2676 2677
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
W
wjj19950828 已提交
2689 2690 2691
        layer_attrs["keep_top_k"] = -1
        layer_attrs["nms_threshold"] = 0.0
        layer_attrs["score_threshold"] = 0.0
2692 2693 2694
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
W
wjj19950828 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
            max_output_boxes_per_class = _const_weight_or_none(
                max_output_boxes_per_class)
            if len(scores.out_shapes[0]) != 0:
                num_classes = scores.out_shapes[0][1]
            else:
                num_classes = 1
            if max_output_boxes_per_class is not None:
                max_output_boxes_per_class = max_output_boxes_per_class.tolist()
                if isinstance(max_output_boxes_per_class, int):
                    layer_attrs[
                        "keep_top_k"] = max_output_boxes_per_class * num_classes
                else:
                    layer_attrs["keep_top_k"] = max_output_boxes_per_class[
                        0] * num_classes
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)