gen_unet.py 3.9 KB
Newer Older
M
Macrobull 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019

@author: Macrobull
"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F

from onnx2fluid.torch_export_helper import export_onnx_with_validation


# from https://github.com/milesial/Pytorch-UNet
class double_conv(nn.Module):
    '''(conv => BN => ReLU) * 2'''

    def __init__(self, in_ch, out_ch):
        super(double_conv, self).__init__()
M
bugfix  
Macrobull 已提交
24 25 26 27
        self.conv = nn.Sequential(nn.Conv2d(in_ch, out_ch, 3, padding=1),
                                  nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True),
                                  nn.Conv2d(out_ch, out_ch, 3, padding=1),
                                  nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True))
M
Macrobull 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

    def forward(self, x):
        x = self.conv(x)
        return x


class inconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(inconv, self).__init__()
        self.conv = double_conv(in_ch, out_ch)

    def forward(self, x):
        x = self.conv(x)
        return x


class down(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(down, self).__init__()
        self.mpconv = nn.Sequential(nn.MaxPool2d(2), double_conv(in_ch, out_ch))

    def forward(self, x):
        x = self.mpconv(x)
        return x


class up(nn.Module):
    def __init__(self, in_ch, out_ch, bilinear=True):
        super(up, self).__init__()

        #  would be a nice idea if the upsampling could be learned too,
        #  but my machine do not have enough memory to handle all those weights
        if bilinear:
M
bugfix  
Macrobull 已提交
61 62
            self.up = nn.Upsample(scale_factor=2,
                                  mode='bilinear')  #, align_corners=True)
M
Macrobull 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
        else:
            self.up = nn.ConvTranspose2d(in_ch // 2, in_ch // 2, 2, stride=2)

        self.conv = double_conv(in_ch, out_ch)

    def forward(self, x1, x2):
        x1 = self.up(x1)

        # input is CHW
        if hasattr(self, 'diffY'):
            diffY = self.diffY
            diffX = self.diffX
        else:
            diffY = self.diffY = x2.size()[2] - x1.size()[2]
            diffX = self.diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(
            x1,
            (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2))

        # for padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd

        x = torch.cat([x2, x1], dim=1)
        x = self.conv(x)
        return x


class outconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(outconv, self).__init__()
        self.conv = nn.Conv2d(in_ch, out_ch, 1)

    def forward(self, x):
        x = self.conv(x)
        return x


class UNet(nn.Module):
    def __init__(self, n_channels, n_classes):
        super(UNet, self).__init__()
        self.inc = inconv(n_channels, 64)
        self.down1 = down(64, 128)
        self.down2 = down(128, 256)
        self.down3 = down(256, 512)
        self.down4 = down(512, 512)
        self.up1 = up(1024, 256)
        self.up2 = up(512, 128)
        self.up3 = up(256, 64)
        self.up4 = up(128, 64)
        self.outc = outconv(64, n_classes)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        x = self.outc(x)
        return F.sigmoid(x)


model = UNet(3, 80)
model.eval()
xb = torch.rand((1, 3, 512, 512))
yp = model(xb)
M
bugfix  
Macrobull 已提交
134 135 136 137
export_onnx_with_validation(model, [xb],
                            'sample_unet', ['image'], ['pred'],
                            verbose=True,
                            training=False)