aten.py 211.5 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
S
SunAhong1993 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph

dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}


def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
S
SunAhong1993 已提交
42
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
43 44 45 46 47 48 49
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
S
SunAhong1993 已提交
50 51
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
52 53 54 55 56
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
57 58 59 60
        "paddle.abs",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
61 62 63
    return current_inputs, current_outputs


S
SunAhong1993 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def aten_adaptive_avg_pool1d(mapper, graph, node):
    """ 构造average adaptive pool1d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool1d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的长度大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]][0]
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool1D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.getitem",
            inputs={"list": layer_inputs["output_size"]},
            outputs=[layer_inputs["output_size"]],
            scope_name=scope_name,
            index=0)
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool1d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
117 118 119 120 121 122 123 124 125
def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
S
SunAhong1993 已提交
126 127
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
128
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
129
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
130 131 132 133 134 135
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
136 137
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
138
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
139 140 141 142
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
143
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
144 145 146 147 148 149
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
150 151
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
152 153
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
S
SunAhong1993 已提交
154
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
155 156 157 158 159 160
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool2d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    return current_inputs, current_outputs


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。
    TorchScript示例:
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
S
SunAhong1993 已提交
176
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
177 178 179 180 181 182 183 184 185
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
    mapper._check_input(
S
SunAhong1993 已提交
186 187 188 189 190 191
        graph,
        inputs_node[0],
        inputs_name[0],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
192 193
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
194 195
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
196 197
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
198 199
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
200 201 202 203 204 205 206 207
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
208
                            current_outputs, scope_name)
S
SunAhong1993 已提交
209 210 211 212 213 214 215
        layer_inputs["beta"] = inputs_name[3]
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
216
                            current_outputs, scope_name)
S
SunAhong1993 已提交
217 218 219 220 221 222 223
        layer_inputs["alpha"] = inputs_name[4]
        current_inputs.append(inputs_name[4])

    graph.add_layer(
        "paddle.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
224
        scope_name=scope_name,
S
SunAhong1993 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
        **layer_attrs)
    return current_inputs, current_outputs


def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %296 : int = aten::add(%i.12, %288)
        参数含义:
        %296 (-): 相加结果。
        %i.12 (-): 输入数值 x。
        %288 (-): 输入数值 y。
    """
S
SunAhong1993 已提交
238
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
239 240 241 242 243 244 245
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
246 247
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
248 249 250
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
S
SunAhong1993 已提交
251 252 253 254 255 256
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
257 258 259 260
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
261 262 263 264 265
    graph.add_layer(
        "prim.add",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
    return current_inputs, current_outputs


def aten_add_(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
    TorchScript示例:
        %137 : Tensor = aten::add(%136, %130, %130)
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
S
SunAhong1993 已提交
279
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
280 281 282 283 284 285 286 287
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
288 289
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
290 291 292
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
    mapper._check_input(
S
SunAhong1993 已提交
293 294 295 296 297 298
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
299 300 301 302 303 304 305 306
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%151
    if inputs_name[2] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
307
                            current_outputs, scope_name)
S
SunAhong1993 已提交
308 309 310 311
        layer_inputs["alpha"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
312 313 314 315 316
        "prim.add_",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
317 318 319 320 321 322 323 324 325 326 327 328
    return current_inputs, current_outputs


def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。
    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
S
SunAhong1993 已提交
329
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
330 331 332 333 334 335 336
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
337 338
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
339 340
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
341 342
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
343 344 345 346
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
347 348 349 350 351
    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
352 353 354 355 356 357 358 359 360 361 362 363
    return current_inputs, current_outputs


def aten_append(mapper, graph, node):
    """ 构造对list进行append的PaddleLayer。
    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
S
SunAhong1993 已提交
364
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
365 366 367 368 369 370
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    layer_outputs = [inputs_name[0]]
    # 获取当前节点输出的list
    current_outputs = [inputs_name[0]]
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
371 372
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
373 374
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
375 376
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
377 378 379 380
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
381 382 383 384 385
    graph.add_layer(
        "prim.append",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
386 387 388 389 390 391 392 393
    return current_inputs, current_outputs


def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。
    TorchScript示例:
        有三种情况,分别处理。
    """
S
SunAhong1993 已提交
394
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
411
                                current_outputs, scope_name)
S
SunAhong1993 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
427
                                current_outputs, scope_name)
S
SunAhong1993 已提交
428 429 430 431 432 433 434
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
435
                                current_outputs, scope_name)
S
SunAhong1993 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
451
                                current_outputs, scope_name)
S
SunAhong1993 已提交
452 453 454 455 456 457 458
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
459
                                current_outputs, scope_name)
S
SunAhong1993 已提交
460 461 462 463 464 465 466
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
467
                                current_outputs, scope_name)
S
SunAhong1993 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
483
        scope_name=scope_name,
S
SunAhong1993 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        **layer_attrs)
    return current_inputs, current_outputs


def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
S
SunAhong1993 已提交
502 503
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
504
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
505
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
506 507 508 509 510 511
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
512 513
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
514 515 516 517
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
518
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
519
    # 处理输入2,即%539
S
SunAhong1993 已提交
520
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
521
    # 处理输入3,即%540
S
SunAhong1993 已提交
522
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
523 524 525 526 527 528 529 530
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
531
        outputs=[inputs_name[6] + "_assert"],
S
SunAhong1993 已提交
532
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
S
SunAhong1993 已提交
533 534 535
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
S
SunAhong1993 已提交
536 537

    graph.add_layer(
S
SunAhong1993 已提交
538
        kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
539
        inputs=layer_inputs,
S
SunAhong1993 已提交
540
        outputs=layer_outputs,
S
SunAhong1993 已提交
541 542
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
543

S
SunAhong1993 已提交
544 545
    return current_inputs, current_outputs

S
SunAhong1993 已提交
546

S
SunAhong1993 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def aten_avg_pool3d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
571 572
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
573 574 575 576
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
577
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
578
    # 处理输入2,即%539
S
SunAhong1993 已提交
579
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
580
    # 处理输入3,即%540
S
SunAhong1993 已提交
581
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

S
SunAhong1993 已提交
596
    graph.add_layer(
S
SunAhong1993 已提交
597
        kernel="paddle.nn.AvgPool3D",
S
SunAhong1993 已提交
598
        inputs=layer_inputs,
S
SunAhong1993 已提交
599
        outputs=layer_outputs,
S
SunAhong1993 已提交
600 601 602 603 604
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
fix  
SunAhong1993 已提交
605
def aten_avg_pool1d(mapper, graph, node):
S
SunAhong1993 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool1d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
629 630
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
631 632 633 634
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
635
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
636
    # 处理输入2,即%539
S
SunAhong1993 已提交
637
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
638
    # 处理输入3,即%540
S
SunAhong1993 已提交
639
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

    graph.add_layer(
S
SunAhong1993 已提交
655
        kernel="paddle.nn.AvgPool1D",
S
SunAhong1993 已提交
656
        inputs=layer_inputs,
S
SunAhong1993 已提交
657
        outputs=layer_outputs,
S
SunAhong1993 已提交
658
        scope_name=scope_name,
S
SunAhong1993 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        **layer_attrs)
    return current_inputs, current_outputs


def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。
    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
680 681
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("batchnorm", mapper.nn_name2id)
S
SunAhong1993 已提交
682
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
683
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
684 685 686 687 688 689 690
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
691 692
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
693 694 695 696 697
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
698
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
699 700 701 702 703
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
704
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
705
    else:
S
SunAhong1993 已提交
706
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
707 708
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
S
SunAhong1993 已提交
709
    mapper.paddle_params[op_name + "._mean"] = mean
S
SunAhong1993 已提交
710 711
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
S
SunAhong1993 已提交
712
    mapper.paddle_params[op_name + "._variance"] = var
S
SunAhong1993 已提交
713 714 715 716 717 718 719 720 721
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "paddle.nn.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
722
        scope_name=scope_name,
S
SunAhong1993 已提交
723 724 725 726
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
def aten_bmm(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bmm(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,矩阵相乘后的结果。
        %i.12 (list): 输入1。
        %7 (int): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
744 745
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
746 747 748
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
S
SunAhong1993 已提交
749 750 751 752 753 754
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
755 756 757 758
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
759 760 761 762 763
    graph.add_layer(
        "paddle.bmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
764 765 766
    return current_inputs, current_outputs


S
SunAhong1993 已提交
767 768 769 770 771 772 773 774 775
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
S
SunAhong1993 已提交
776
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
777 778 779 780 781 782 783 784
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
785 786
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
787
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
788 789 790 791 792 793 794
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
795
                            current_outputs, scope_name)
S
SunAhong1993 已提交
796 797 798
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
799
        "paddle.concat",
S
SunAhong1993 已提交
800 801
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
802
        scope_name=scope_name,
S
SunAhong1993 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816
        **layer_attrs)
    return current_inputs, current_outputs


def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
S
SunAhong1993 已提交
817
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
818 819 820 821 822 823 824 825
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
S
SunAhong1993 已提交
826 827
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
828
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
829 830 831 832 833 834 835
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
836
                            current_outputs, scope_name)
S
SunAhong1993 已提交
837 838 839 840
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
S
SunAhong1993 已提交
841
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
842 843
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
844 845
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
846 847
        current_inputs.append(inputs_name[2])
    graph.add_layer(
S
SunAhong1993 已提交
848
        "paddle.split",
S
SunAhong1993 已提交
849 850
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
851
        scope_name=scope_name,
S
SunAhong1993 已提交
852 853 854 855
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
def aten_clamp(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp(%input.1, %46, %48, %49)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
        %48 (float/Tensor): 最大值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
875 876
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%48,代表dtype
    if inputs_name[2] in mapper.attrs:
        layer_attrs["max"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["max"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
def aten_clamp_min(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp_min(%input.1, %46)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
924 925
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
947 948 949 950 951 952 953 954 955
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。
    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
956
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
957 958 959 960 961 962 963
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
S
SunAhong1993 已提交
964 965
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
966 967
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
S
SunAhong1993 已提交
968 969
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
970 971 972 973
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
974 975 976 977 978
    graph.add_layer(
        "prim.contain",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991
    return current_inputs, current_outputs


def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。
    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
S
SunAhong1993 已提交
992 993
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
S
SunAhong1993 已提交
994
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
995
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
996 997 998 999 1000 1001
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
S
SunAhong1993 已提交
1002 1003
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1004 1005 1006 1007 1008 1009
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4876
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%42
S
SunAhong1993 已提交
1010
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1011 1012

    graph.add_layer(
S
SunAhong1993 已提交
1013
        "prim.shape",
S
SunAhong1993 已提交
1014
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
1015 1016
        outputs=[inputs_name[0] + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1017 1018 1019
    graph.add_layer(
        "prim.len",
        inputs={"input": inputs_name[0] + "_shape"},
S
SunAhong1993 已提交
1020 1021
        outputs=[inputs_name[0] + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1022 1023 1024 1025 1026 1027

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1028
            scope_name=scope_name,
S
SunAhong1993 已提交
1029 1030 1031
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1032 1033
            outputs=[inputs_name[0] + "_if", output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1034
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1035 1036
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1037 1038 1039 1040
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
S
SunAhong1993 已提交
1041
            scope_name=scope_name,
S
SunAhong1993 已提交
1042 1043 1044 1045
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
S
SunAhong1993 已提交
1046 1047
            outputs=[inputs_name[0] + "_list"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1048
        block.add_layer(
S
SunAhong1993 已提交
1049
            "paddle.unsqueeze",
S
SunAhong1993 已提交
1050 1051
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1052 1053
            outputs=[inputs_name[0] + "_var"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1054 1055 1056
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
S
SunAhong1993 已提交
1057
            outputs=copy.deepcopy(layer_outputs),
S
SunAhong1993 已提交
1058
            scope_name=scope_name,
S
SunAhong1993 已提交
1059 1060
            **layer_attrs)
        block.add_layer(
S
SunAhong1993 已提交
1061
            "paddle.squeeze",
S
SunAhong1993 已提交
1062 1063
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1064 1065
            outputs=[output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1066
        if_layer.add_block(block)
S
SunAhong1993 已提交
1067 1068
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1069 1070
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
S
SunAhong1993 已提交
1071 1072 1073 1074 1075
            kernel,
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1076 1077 1078 1079 1080
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

    if len(layer_attrs["padding"]) == 2:
S
add gru  
SunAhong1993 已提交
1081
        layer_outputs[0] = layer_outputs[0].raplace("pad", "pad1d")
S
SunAhong1993 已提交
1082
        add_pad_layers("paddle.nn.Pad1D", 3)
S
SunAhong1993 已提交
1083
    elif len(layer_attrs["padding"]) == 4:
S
add gru  
SunAhong1993 已提交
1084
        layer_outputs[0] = layer_outputs[0].raplace("pad", "pad2d")
S
SunAhong1993 已提交
1085
        add_pad_layers("paddle.nn.Pad2D", 4)
S
SunAhong1993 已提交
1086
    elif len(layer_attrs["padding"]) == 6:
S
add gru  
SunAhong1993 已提交
1087
        layer_outputs[0] = layer_outputs[0].raplace("pad", "pad3d")
S
SunAhong1993 已提交
1088
        add_pad_layers("paddle.nn.Pad3D", 5)
S
SunAhong1993 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    else:
        raise Exception("The lenght of padding list must be 2, 4 or 6!")
    return current_inputs, current_outputs


def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。
    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。
    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
1104
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1105 1106 1107 1108 1109 1110 1111 1112
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
S
SunAhong1993 已提交
1113 1114
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1115 1116 1117 1118
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1119 1120 1121 1122 1123
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    return current_inputs, current_outputs


def aten_conv2d(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
S
SunAhong1993 已提交
1138
        %30 (int): 空洞大小。
S
SunAhong1993 已提交
1139 1140
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
1141 1142
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1143
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1144
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1145 1146 1147 1148 1149 1150
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1151 1152
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1153 1154 1155 1156 1157
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1158
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
1159 1160 1161 1162 1163 1164
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1165
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]

    graph.add_layer(
S
SunAhong1993 已提交
1181
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
1182 1183
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1184
        scope_name=scope_name,
S
SunAhong1993 已提交
1185 1186 1187 1188 1189 1190 1191
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
1192
        %input.10 : Tensor = aten::_convolution(%input.1, %18, %10, %19, %20, %21, %13, %22, %12, %13, %13, %15)
S
SunAhong1993 已提交
1193 1194 1195
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
S
SunAhong1993 已提交
1196 1197 1198 1199
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
S
SunAhong1993 已提交
1200
        %21 (list): 空洞大小。
S
SunAhong1993 已提交
1201 1202 1203
        %13 (bool): 是否进行转置卷积。
        %22 (list): 输出形状上一侧额外添加的大小。
        %12 (int): 卷积的组数。
S
SunAhong1993 已提交
1204
    """
S
SunAhong1993 已提交
1205 1206
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1207
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1208
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1209 1210 1211 1212 1213 1214
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1215 1216
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1217 1218 1219
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1220
    # 处理输入1,即%18
S
SunAhong1993 已提交
1221
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1222 1223
    mapper.paddle_params[op_name +
                         ".weight"] = weights  #np.swapaxes(weights, 0, 1)
S
SunAhong1993 已提交
1224 1225 1226 1227
    if mapper.attrs[inputs_name[6]]:
        layer_attrs["out_channels"] = weights.shape[1]
    else:
        layer_attrs["out_channels"] = weights.shape[0]
S
SunAhong1993 已提交
1228
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
1229
    # 处理输入2,即%10
S
SunAhong1993 已提交
1230 1231 1232
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1233
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1234 1235 1236 1237
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
1238
    # 处理输入3,即%19
S
SunAhong1993 已提交
1239
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
1240
    # 处理输入4,即%20
S
SunAhong1993 已提交
1241
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1242
    # 处理输入5,即%21
S
SunAhong1993 已提交
1243
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
1244 1245 1246 1247 1248 1249
    # 处理输入6,即%13
    if mapper.attrs[inputs_name[6]]:
        # 处理输入7,即%22
        layer_attrs["output_padding"] = mapper.attrs[inputs_name[7]]
    # 处理输入8,即%12
    layer_attrs["groups"] = mapper.attrs[inputs_name[8]]
S
SunAhong1993 已提交
1250
    if mapper.attrs[inputs_name[6]]:
S
SunAhong1993 已提交
1251 1252
        layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1253
    else:
S
SunAhong1993 已提交
1254 1255
        layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    if mapper.attrs[inputs_name[6]]:
        graph.add_layer(
            "paddle.nn.Conv2DTranspose",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        graph.add_layer(
            "paddle.nn.Conv2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1270 1271 1272
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
def aten_conv_transpose2d(mapper, graph, node):
    """ 构造conv_transpose2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
        %21 (int/tuple): 输出形状上一侧额外添加的大小。
        %13 (int): 二维卷积层的组数。
        %22 (int/tuple): 空洞大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1298 1299
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%18
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["out_channels"] = weights.shape[1]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%10
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%19
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%20
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%21
    layer_attrs["output_padding"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%13
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%22
    layer_attrs["dilation"] = mapper.attrs[inputs_name[7]]
S
SunAhong1993 已提交
1327
    layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336
    graph.add_layer(
        "paddle.nn.Conv2DTranspose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1337 1338 1339 1340 1341 1342 1343 1344
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
1345
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1346 1347 1348 1349 1350 1351 1352
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1353 1354
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1355 1356 1357 1358
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1359 1360 1361 1362 1363
    graph.add_layer(
        "paddle.cos",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    return current_inputs, current_outputs


def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
S
SunAhong1993 已提交
1377
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1378 1379 1380 1381 1382 1383 1384 1385
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
1386 1387
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1388 1389 1390 1391 1392 1393 1394 1395
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1396
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1409
        scope_name=scope_name,
S
SunAhong1993 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        **layer_attrs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。
    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。
    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
S
SunAhong1993 已提交
1423
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1424 1425 1426 1427 1428 1429 1430 1431
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
1432 1433
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1434 1435 1436
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1437 1438 1439 1440 1441
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

    return current_inputs, current_outputs


def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。
    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
S
SunAhong1993 已提交
1453
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1454 1455 1456 1457 1458 1459 1460
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

S
SunAhong1993 已提交
1461 1462 1463 1464 1465
    graph.add_layer(
        "prim.dict",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    return current_inputs, current_outputs


def aten_dim(mapper, graph, node):
    """ 构造获取维度的PaddleLayer。
    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1477
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1478 1479 1480 1481 1482 1483
    output_name = mapper._get_outputs_name(node)[0]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1484 1485
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1486
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1487 1488 1489 1490
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1491 1492 1493 1494
        "prim.shape",
        inputs=layer_inputs,
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1495
    graph.add_layer(
S
SunAhong1993 已提交
1496 1497 1498 1499
        "prim.len",
        inputs={"input": output_name},
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    return current_inputs, current_outputs


def aten_div_(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1519 1520
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1521 1522
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1523 1524
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1525 1526 1527 1528
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1529 1530 1531 1532 1533
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
S
SunAhong1993 已提交
1546
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1547 1548 1549 1550 1551 1552 1553
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1554 1555
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1556 1557
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1558 1559
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1560 1561 1562 1563
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1564 1565 1566 1567 1568
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    return current_inputs, current_outputs


def aten_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1581 1582
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1583
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1584
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1585 1586 1587 1588 1589
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1590 1591
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1592 1593 1594 1595 1596
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1597 1598 1599 1600 1601
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    return current_inputs, current_outputs


def aten_dropout_(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout_(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1614 1615
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1616
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1617
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1618 1619 1620 1621 1622
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1623 1624
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1625 1626 1627 1628 1629
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1630 1631 1632 1633 1634
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。
    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
S
SunAhong1993 已提交
1650 1651
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("embedding", mapper.nn_name2id)
S
SunAhong1993 已提交
1652
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1653
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1654 1655 1656 1657 1658 1659 1660
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
S
SunAhong1993 已提交
1661 1662 1663
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["num_embeddings"] = weights.shape[0]
    layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1664
    # 处理输入1,即%input_ids.1
S
SunAhong1993 已提交
1665 1666
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
S
SunAhong1993 已提交
1676
    layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1677 1678

    graph.add_layer(
S
SunAhong1993 已提交
1679
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1680 1681
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1682
        scope_name=scope_name,
S
SunAhong1993 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        **layer_attrs)
    return current_inputs, current_outputs


def aten_eq(mapper, graph, node):
    """ 构造判断数值是否相等的PaddleLayer。
    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1696
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1697 1698 1699 1700 1701 1702 1703
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1704 1705
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1706 1707 1708 1709
    layer_inputs["x"] = inputs_name[0]
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
    # 处理输入1,即%123
S
SunAhong1993 已提交
1710 1711
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1712 1713 1714 1715 1716
    layer_inputs["y"] = inputs_name[1]
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1717 1718 1719 1720 1721
    graph.add_layer(
        "prim.eq",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1722 1723 1724
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
def aten_erf(mapper, graph, node):
    """ 构造逐元素计算 Erf 激活函数的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::erf(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,erf之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行erf的Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1741 1742
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1743 1744 1745 1746
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1747 1748 1749 1750 1751
    graph.add_layer(
        "paddle.erf",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1752 1753 1754
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1755 1756 1757 1758 1759 1760 1761 1762
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
    """
S
SunAhong1993 已提交
1763
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1764 1765 1766 1767 1768 1769 1770
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1771 1772
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1773 1774 1775 1776 1777
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1778 1779 1780 1781
        "paddle.exp",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    return current_inputs, current_outputs


def aten_expand(mapper, graph, node):
    """ 构造对某维度进行广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
        %1567 (bool): 未使用。
    """
S
SunAhong1993 已提交
1795
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1796 1797 1798
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1799
    layer_attrs = {}
S
SunAhong1993 已提交
1800 1801 1802 1803
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1804 1805
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1806
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1816
    graph.add_layer(
S
SunAhong1993 已提交
1817 1818 1819
        "paddle.expand",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1820
        scope_name=scope_name,
S
SunAhong1993 已提交
1821
        **layer_attrs)
S
SunAhong1993 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    return current_inputs, current_outputs


def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
S
SunAhong1993 已提交
1834
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1835 1836 1837 1838 1839 1840 1841
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1842 1843
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1844 1845
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
S
SunAhong1993 已提交
1846 1847
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1848
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1849 1850
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1851

S
SunAhong1993 已提交
1852 1853 1854
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
1855 1856
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1857 1858 1859
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
S
SunAhong1993 已提交
1860 1861
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1862 1863 1864 1865
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1866
        scope_name=scope_name,
S
SunAhong1993 已提交
1867 1868 1869
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1870 1871
        outputs=[inputs_name[0] + "_if1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1872
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1873 1874
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1875 1876 1877
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
1878 1879
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1880
    block.add_layer(
S
SunAhong1993 已提交
1881
        "paddle.cast",
S
SunAhong1993 已提交
1882 1883
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
S
SunAhong1993 已提交
1884
        scope_name=scope_name,
S
SunAhong1993 已提交
1885 1886
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
S
SunAhong1993 已提交
1887 1888
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1889 1890 1891 1892
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
S
SunAhong1993 已提交
1893 1894 1895 1896
        "paddle.expand_as",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1897 1898
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1899 1900
        outputs=[inputs_name[0] + "_if2"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1901
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1902 1903
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1904
    block.add_layer(
S
SunAhong1993 已提交
1905
        "paddle.cast",
S
SunAhong1993 已提交
1906
        inputs={"x": layer_outputs[0]},
S
SunAhong1993 已提交
1907 1908
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name,
S
SunAhong1993 已提交
1909 1910
        dtype=string("bool"))
    if_layer.add_block(block)
S
SunAhong1993 已提交
1911 1912
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1913 1914
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
1915
    # TODO(syf): check expand_as
S
SunAhong1993 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    #     # 处理输入0,即%1875
    #     mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    #     layer_inputs["x"] = inputs_name[0]
    #     # 处理输入1,即%1888
    #     mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    #     layer_inputs["y"] = inputs_name[1]
    #     # 获取当前节点输入的list
    #     current_inputs = list(layer_inputs.values())
    #     graph.add_layer(
    #         "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    return current_inputs, current_outputs


def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
    TorchScript示例:
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
        参数含义:
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
1942
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1943 1944 1945 1946 1947 1948 1949 1950
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%49
S
SunAhong1993 已提交
1951 1952
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1953 1954 1955 1956
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1957
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1958 1959 1960 1961 1962 1963 1964
        layer_inputs["num_columns"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]

    graph.add_layer(
S
SunAhong1993 已提交
1965
        "paddle.eye",
S
SunAhong1993 已提交
1966 1967
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1968
        scope_name=scope_name,
S
SunAhong1993 已提交
1969 1970 1971
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
1972

S
SunAhong1993 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
def aten_feature_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::feature_dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1991 1992
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1993 1994 1995 1996 1997
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1998 1999 2000 2001 2002
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
2003 2004
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。
    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。
    """
S
SunAhong1993 已提交
2016
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2017 2018 2019
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
2020
    layer_attrs = {}
S
SunAhong1993 已提交
2021 2022 2023 2024
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x
S
SunAhong1993 已提交
2025 2026
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2027 2028 2029 2030
    # 处理输入1,即%4
    layer_attrs["start_axis"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%20
    layer_attrs["stop_axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2031 2032 2033 2034 2035
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2036
        "paddle.flatten",
S
SunAhong1993 已提交
2037 2038
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2039 2040
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2052
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2053 2054 2055 2056 2057 2058 2059
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
S
SunAhong1993 已提交
2060 2061
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2062 2063 2064 2065
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2066 2067 2068 2069 2070
    graph.add_layer(
        "prim.float",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。
    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2082
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2083 2084 2085 2086 2087 2088 2089
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
S
SunAhong1993 已提交
2090 2091
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2092
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2093 2094
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2095
    graph.add_layer(
S
SunAhong1993 已提交
2096
        "prim.type", {'input': inputs_name[0]},
S
SunAhong1993 已提交
2097 2098 2099
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2100
        "prim.str", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2101 2102 2103
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2104
        "prim.startswith", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2105 2106
        outputs=[inputs_name[0] + "_cond"],
        scope_name=scope_name,
S
SunAhong1993 已提交
2107
        start_str=string("VarType"))
S
SunAhong1993 已提交
2108
    graph.add_layer(
S
SunAhong1993 已提交
2109
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
2110 2111 2112
        outputs=[inputs_name[0] + "_if"],
        scope_name=scope_name)
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
2113 2114 2115 2116 2117 2118 2119
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
    block.add_layer(
        "paddle.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2120
    if_layer.add_block(block)
S
SunAhong1993 已提交
2121 2122 2123 2124 2125 2126 2127
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2128 2129 2130
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.outputs.append(output_name)
S
SunAhong1993 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2143
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2144 2145 2146 2147 2148 2149 2150
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2151 2152
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2153 2154
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2155 2156
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2157 2158 2159 2160
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2161 2162 2163 2164 2165
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    return current_inputs, current_outputs


def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2178
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2179 2180 2181 2182 2183 2184 2185
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2186 2187
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2188 2189
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2190 2191
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2192 2193 2194 2195
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2196 2197 2198 2199 2200
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    return current_inputs, current_outputs


def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
S
SunAhong1993 已提交
2218
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2219 2220 2221 2222 2223 2224 2225 2226
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
S
SunAhong1993 已提交
2227 2228
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2229 2230 2231 2232 2233 2234 2235 2236
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2237
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2247
        scope_name=scope_name,
S
SunAhong1993 已提交
2248 2249 2250 2251
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
def aten_gather(mapper, graph, node):
    """ 构造gather激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gather(%input.5, %18, %19, %20, %21)
        参数含义:
        %result.3 (Tensor): 输出,gather后的结果。
        %result.5 (Tensor): 需要gather的Tensor。
        %18 (int): 需要gather的维度。
        %19 (Tensor): 需要gather的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gather", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2272 2273
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2274 2275 2276 2277
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%18
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%19
S
SunAhong1993 已提交
2278 2279
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2280 2281 2282
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2283

S
SunAhong1993 已提交
2284
    graph.add_layer(
S
SunAhong1993 已提交
2285 2286 2287
        "custom_layer:Gather",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2288 2289 2290 2291 2292
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2302 2303
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gelu", mapper.nn_name2id)
S
SunAhong1993 已提交
2304
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2305
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2306 2307 2308 2309 2310
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2311 2312
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2313 2314 2315 2316 2317
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2318 2319 2320 2321
        "paddle.nn.GELU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    return current_inputs, current_outputs


def aten___getitem__(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
2334
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2335 2336 2337 2338 2339 2340 2341
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2342 2343
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2344 2345
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
2346 2347
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2348 2349 2350 2351
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2352 2353 2354 2355 2356
    graph.add_layer(
        "prim.getitem",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    return current_inputs, current_outputs


def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2369
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2370 2371 2372 2373 2374 2375 2376
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
S
SunAhong1993 已提交
2377 2378
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2379 2380
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
S
SunAhong1993 已提交
2381 2382
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2383 2384 2385 2386
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2387 2388 2389 2390 2391
    graph.add_layer(
        "prim.gt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2392 2393 2394
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
def aten_gru(mapper, graph, node):
    """ 构造门控循环单元网络(GRU)的PaddleLayer。
    TorchScript示例:
        %21, %22 = aten::gru(%input, %hx, %20, %11, %10, %9, %11, %8, %11)
        参数含义:
        %21 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %22 (Tensor): 输出,最终状态。
        %input (Tensor): 网络输入。
        %hx (Tensor): 网络的初始状态。
        %20 (list): 所有权重组合成的list。
        %11 (bool): 是否使用bias。
        %10 (int): 网络层数。
        %9 (float): dropout概率。
        %11 (bool): 是否为训练阶段。
        %8 (bool): 是否使用双向LSTM。
        %11 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gru", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
2423 2424
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2425 2426
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
2427 2428
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2429 2430 2431 2432
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
2433 2434
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2435 2436 2437 2438 2439
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
2440 2441 2442 2443
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 3)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
add gru  
SunAhong1993 已提交
2444 2445
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
2446 2447 2448 2449
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
add gru  
SunAhong1993 已提交
2450 2451
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
2452 2453
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
add gru  
SunAhong1993 已提交
2454
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
2455

S
add gru  
SunAhong1993 已提交
2456 2457 2458 2459 2460
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
2461 2462 2463
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
add gru  
SunAhong1993 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.GRU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
def aten_hardtanh_(mapper, graph, node):
    """ 构造hardtanh激活的PaddleLayer。
    TorchScript示例:
        %result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
2495 2496
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardtanh", mapper.nn_name2id)
S
SunAhong1993 已提交
2497
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2498
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2499 2500 2501 2502 2503 2504
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.20
S
SunAhong1993 已提交
2505 2506
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2507 2508 2509 2510 2511 2512 2513 2514
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%67
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%66
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
2515
    if layer_attrs["min"] == 0 and layer_attrs["max"] == 6:
S
SunAhong1993 已提交
2516
        graph.add_layer(
S
SunAhong1993 已提交
2517 2518 2519 2520
            "paddle.nn.ReLU6",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
2521 2522 2523 2524 2525 2526 2527
    else:
        graph.add_layer(
            'paddle.nn.Hardtanh',
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
2528 2529 2530
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
def aten_index(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
    TorchScript示例:
        %1681 : Float = aten::index(%1653, %1680)
        参数含义:
        %1681 (Tensor): 输出,选择后的Tensor。
        %1653 (Tensor): 需要选择的Tensor。
        %1680 (int): 选择的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1653
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1680
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.getitem",
        inputs={"list": layer_inputs["index"]},
        outputs=[layer_inputs["index"]],
        scope_name=scope_name,
        index=0)
    graph.add_layer(
        "paddle.index_select",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2572

S
SunAhong1993 已提交
2573 2574 2575

def aten_index_select(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
S
SunAhong1993 已提交
2576 2577 2578 2579 2580 2581 2582 2583
    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
S
SunAhong1993 已提交
2584
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2585 2586 2587 2588 2589 2590 2591 2592
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
2593 2594
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2595 2596 2597 2598 2599 2600
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2601
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2602 2603 2604
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%371
S
SunAhong1993 已提交
2605 2606
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2607 2608 2609 2610 2611 2612 2613 2614
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.index_select",
        inputs=layer_inputs,
        outputs=current_outputs,
S
SunAhong1993 已提交
2615
        scope_name=scope_name,
S
SunAhong1993 已提交
2616 2617 2618 2619
        **layer_attrs)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
def aten_instance_norm(mapper, graph, node):
    """构造InstanceNorm的PaddleLayer
    TorchScript示例:
        %res.7 : Tensor = aten::instance_norm(%res.5, %88, %85, %84, %83, %87, %91, %92, %87)
        参数含义:
        %res.7 (Tensor): 输出,InstanceNorm的结果。
        %res.5 (Tensor): 需要进行InstanceNorm的特征层。
        %88 (Tensor): weights。
        %85 (Tensor): bias。
        %84 (Tensor): 全局均值。
        %83 (Tensor): 全局方差。
        %87 (bool): 是否使用输入的统计。
        %91 (float): momentum。
        %92 (float): eps。
        %87 (bool): 是否启用cudnn。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("instance_norm", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
2646 2647
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%88
    if inputs_name[1] in mapper.pytorch_params:
        weights = mapper.pytorch_params[inputs_name[1]]
        mapper.paddle_params[op_name + ".weight"] = weights
        layer_attrs['num_features'] = weights.shape[0]
    # 处理输入2,即%85
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        mapper.paddle_params[op_name + ".bias"] = bias
    # 处理输入3,即%84
    if inputs_name[3] in mapper.pytorch_params:
        mean = mapper.pytorch_params[inputs_name[3]]
        mapper.paddle_params[op_name + "._mean"] = mean
    # 处理输入4,即%83
    if inputs_name[4] in mapper.pytorch_params:
        var = mapper.pytorch_params[inputs_name[4]]
        mapper.paddle_params[op_name + "._variance"] = var
    # 处理输入6,即%91
    layer_attrs["momentum"] = 1 - mapper.attrs[inputs_name[6]]
    # 处理输入7,即%92
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "custom_layer:InstanceNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2682 2683 2684 2685 2686 2687 2688 2689
def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。
    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
S
SunAhong1993 已提交
2690
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2691 2692 2693 2694 2695 2696 2697
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
S
SunAhong1993 已提交
2698 2699
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2700 2701 2702 2703
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2704 2705 2706 2707 2708
    graph.add_layer(
        "prim.int",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
    return current_inputs, current_outputs


def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2721
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2722 2723 2724 2725 2726 2727 2728
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
2729 2730
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2731 2732
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
2733 2734
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2735 2736 2737 2738
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2739 2740 2741 2742 2743
    graph.add_layer(
        "prim.is",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2756
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2757 2758 2759 2760 2761 2762 2763
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
2764 2765
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2766 2767
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
2768 2769
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2770 2771 2772 2773
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2774 2775 2776 2777 2778
    graph.add_layer(
        "prim.isnot",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
    return current_inputs, current_outputs


def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。
    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
2795 2796
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("layernorm", mapper.nn_name2id)
S
SunAhong1993 已提交
2797
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2798
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2799 2800 2801 2802 2803 2804
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
S
SunAhong1993 已提交
2805 2806
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2807 2808 2809 2810 2811 2812 2813
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
2814
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
2815 2816 2817 2818
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
S
SunAhong1993 已提交
2819
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
2820
    else:
S
SunAhong1993 已提交
2821
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
2822 2823 2824 2825 2826 2827 2828
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2829
        scope_name=scope_name,
S
SunAhong1993 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
        **layer_attrs)
    return current_inputs, current_outputs


def aten_le(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2843
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2844 2845 2846 2847 2848 2849 2850
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
2851 2852
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2853 2854
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
2855 2856
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2857 2858 2859 2860
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2861 2862 2863 2864 2865
    graph.add_layer(
        "prim.le",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
    return current_inputs, current_outputs


def aten_leaky_relu_(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。
    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu_(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
        %1570 (float): 输入中的元素小于0时的斜率。
    """
S
SunAhong1993 已提交
2878 2879
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("leakly_relu", mapper.nn_name2id)
S
SunAhong1993 已提交
2880
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2881
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2882 2883 2884 2885 2886 2887
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2888 2889
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2900
        scope_name=scope_name,
S
SunAhong1993 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        **layer_attrs)
    return current_inputs, current_outputs


def aten_len(mapper, graph, node):
    """ 构造获取list长度的PaddleLayer。
    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
2913
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2914 2915 2916 2917 2918 2919 2920
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2921 2922
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2923 2924 2925 2926
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2927 2928 2929 2930 2931
    graph.add_layer(
        "prim.len",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
    return current_inputs, current_outputs


def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
S
SunAhong1993 已提交
2943
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2944 2945 2946 2947 2948 2949 2950
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
2951 2952
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2953 2954 2955 2956 2957
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2958 2959 2960 2961
        "paddle.log",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2962 2963 2964
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
def aten_log_softmax(mapper, graph, node):
    """ 构造log_softmax的PaddleLayer。
    TorchScript示例:
        %4 = aten::log_softmax(%input, %2, %3)
        参数含义:
        %4 (Tensor): 输出的Tensor。
        %input (Tensor): 输入的Tensor。
        %2 (int): 指定对输入进行运算的轴。
        %3 (int): 输入Tensor的数据类型。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%input
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%2,代表dtype
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
    # 处理输入2,即%3,代表dtype
    if mapper.attrs[inputs_name[2]] is not None:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.nn.functional.log_softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
def aten_lstm(mapper, graph, node):
    """ 构造长短期记忆网络(LSTM)的PaddleLayer。
    TorchScript示例:
        %input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
        参数含义:
        %input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %551 (Tensor): cell state。
        %552 (Tensor): hidden state。
        %input.95 (Tensor): 网络输入。
        %734 (Tensor): 网络的初始状态。
        %549 (list): 所有权重组合成的list。
        %526 (bool): 是否使用bias。
        %525 (int): 网络层数。
        %524 (float): dropout概率。
        %526 (bool): 是否为训练阶段。
        %526 (bool): 是否使用双向LSTM。
        %526 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("lstm", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
3039 3040
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3041 3042
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
3043 3044
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3045 3046 3047 3048
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
3049 3050
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3051 3052 3053 3054 3055
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
3056 3057 3058 3059
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 4)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
SunAhong1993 已提交
3060 3061
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
3062 3063 3064 3065
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
SunAhong1993 已提交
3066 3067
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
3068 3069
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
SunAhong1993 已提交
3070
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
3071

S
SunAhong1993 已提交
3072 3073 3074 3075 3076
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
3077 3078 3079
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
SunAhong1993 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.LSTM",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3101 3102 3103 3104 3105 3106 3107 3108 3109
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3110
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3111 3112 3113 3114 3115 3116 3117
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3118 3119
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3120 3121
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3122 3123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3124 3125 3126 3127
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3128 3129 3130 3131 3132
    graph.add_layer(
        "prim.lt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
    return current_inputs, current_outputs


def aten_masked_fill_(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。
    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill_(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
3146
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
3156 3157
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3158 3159 3160 3161
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
3162 3163
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3164
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
3165 3166
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3167 3168 3169 3170
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
3171 3172
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3173
    graph.add_layer(
S
SunAhong1993 已提交
3174
        "paddle.cast",
S
SunAhong1993 已提交
3175 3176
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
3177
        scope_name=scope_name,
S
SunAhong1993 已提交
3178 3179
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
3180
        "paddle.cast",
S
SunAhong1993 已提交
3181 3182
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
3183
        scope_name=scope_name,
S
SunAhong1993 已提交
3184 3185 3186 3187 3188
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
3189 3190
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3191
    # 处理输入2,即%46
S
SunAhong1993 已提交
3192 3193
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3194 3195 3196 3197
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
3198
        scope_name=scope_name,
S
SunAhong1993 已提交
3199 3200 3201 3202 3203
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
3204
        scope_name=scope_name,
S
SunAhong1993 已提交
3205 3206 3207 3208 3209 3210 3211
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
3212 3213
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3214 3215
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
3216 3217
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3218
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
3219 3220
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3221 3222 3223
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
3224 3225
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3226
    if_layer.add_block(block)
S
SunAhong1993 已提交
3227 3228
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3229 3230 3231 3232
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
3233 3234
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3235 3236 3237 3238 3239
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
3240
        "paddle.add",
S
SunAhong1993 已提交
3241 3242
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
3243 3244
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
    return current_inputs, current_outputs


def aten_masked_fill(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。
    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
3258
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3259 3260 3261 3262 3263 3264 3265 3266 3267
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
3268 3269
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3270 3271 3272 3273
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
3274 3275
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3276
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
3277 3278
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3279 3280 3281 3282
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
3283 3284
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3285
    graph.add_layer(
S
SunAhong1993 已提交
3286
        "paddle.cast",
S
SunAhong1993 已提交
3287 3288
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
3289
        scope_name=scope_name,
S
SunAhong1993 已提交
3290 3291
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
3292
        "paddle.cast",
S
SunAhong1993 已提交
3293 3294
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
3295
        scope_name=scope_name,
S
SunAhong1993 已提交
3296 3297 3298 3299 3300
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
3301 3302
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3303
    # 处理输入2,即%46
S
SunAhong1993 已提交
3304 3305
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3306 3307 3308 3309
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
3310
        scope_name=scope_name,
S
SunAhong1993 已提交
3311 3312 3313 3314 3315
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
3316
        scope_name=scope_name,
S
SunAhong1993 已提交
3317 3318 3319 3320 3321 3322 3323
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
3324 3325
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3326 3327
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
3328 3329
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3330
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
3331 3332
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3333 3334 3335
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
3336 3337
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3338
    if_layer.add_block(block)
S
SunAhong1993 已提交
3339 3340
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3341 3342 3343 3344
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
3345 3346
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3347 3348 3349 3350 3351
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
3352
        "paddle.add",
S
SunAhong1993 已提交
3353 3354
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
3355 3356
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3369
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3380
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3381 3382 3383
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3384
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3385 3386 3387 3388
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3389 3390 3391 3392
            "paddle.maximum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
    else:
        pass
    return current_inputs, current_outputs


def aten_max_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
3411 3412
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
3413
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3414
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3415 3416
    layer_inputs = {}
    layer_attrs = {}
S
SunAhong1993 已提交
3417
    layer_attrs_tmp = {}
S
SunAhong1993 已提交
3418 3419 3420 3421
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
3422 3423
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3424 3425 3426 3427
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
S
SunAhong1993 已提交
3428 3429
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    layer_attrs_tmp["pool_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3430
    # 处理输入2,即%23
S
SunAhong1993 已提交
3431 3432
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    layer_attrs_tmp["pool_stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3433
    # 处理输入3,即%21
S
SunAhong1993 已提交
3434 3435
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    layer_attrs_tmp["pool_padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
3436 3437 3438 3439
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
3440
        outputs=[inputs_name[4] + "_assert"],
S
SunAhong1993 已提交
3441
        scope_name=scope_name + "_assert",
S
SunAhong1993 已提交
3442 3443 3444 3445 3446
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3447
    layer_attrs_tmp["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3448

S
SunAhong1993 已提交
3449 3450 3451 3452 3453 3454
    graph.add_layer(
        "paddle.nn.MaxPool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
    return current_inputs, current_outputs


def aten_matmul(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
3467
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3468 3469 3470 3471 3472 3473 3474
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%101
S
SunAhong1993 已提交
3475 3476
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3477 3478
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
3479 3480
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3481 3482 3483 3484
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3485 3486 3487 3488 3489
    graph.add_layer(
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    return current_inputs, current_outputs


def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3502
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3513
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3514 3515 3516
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3517
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3518 3519 3520 3521
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3522 3523 3524 3525
            "paddle.minimum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
    else:
        pass
    return current_inputs, current_outputs


def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。
    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
S
SunAhong1993 已提交
3542
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3543 3544 3545 3546 3547 3548 3549 3550
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
S
SunAhong1993 已提交
3551 3552
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3553
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3554 3555 3556
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3557
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3558 3559
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3560 3561
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3562 3563 3564
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3565
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3566 3567
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3568 3569
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
S
SunAhong1993 已提交
3570 3571 3572
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
3573
        "paddle.mean",
S
SunAhong1993 已提交
3574 3575
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3576
        scope_name=scope_name,
S
SunAhong1993 已提交
3577 3578
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596


def aten_meshgrid(mapper, graph, node):
    """ 构造对每个张量做扩充操作的PaddleLayer。
    TorchScript示例:
        %out.39 : int = aten::mshgrid(%input.1)
        参数含义:
        %out.39 (Tensor): 输出,扩充后的结果。
        %input.1 (Tensor): 输入。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
3597 3598
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3599 3600 3601 3602 3603
    layer_inputs["args"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = layer_inputs.values()
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3604 3605 3606 3607 3608
    graph.add_layer(
        "paddle.meshgrid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3609
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620


def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3621
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3622 3623 3624 3625 3626 3627 3628
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3629 3630
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3631 3632
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3633 3634
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3635 3636 3637 3638 3639
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3640 3641 3642 3643 3644
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
    return current_inputs, current_outputs


def aten_mul_(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul_(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3657
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3658 3659 3660 3661 3662 3663 3664
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3665 3666
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3667 3668
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3669 3670
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3671 3672 3673 3674 3675
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3676 3677 3678 3679 3680
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。
    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3693
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3694 3695 3696 3697 3698 3699 3700
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3701 3702
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3703 3704
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
3705 3706
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3707 3708 3709 3710
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3711 3712 3713 3714 3715
    graph.add_layer(
        "prim.ne",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。
    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
S
SunAhong1993 已提交
3727
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3728 3729 3730 3731 3732 3733 3734
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3735 3736
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3737 3738 3739 3740
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3741 3742 3743 3744 3745
    graph.add_layer(
        "prim.neg",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3746 3747 3748
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
def aten_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::norm(%input, %21, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %21 (int): 范数的种类。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
3769 3770
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%21
    if inputs_name[1] in mapper.attrs:
        layer_attrs["p"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["p"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[3]
        current_inputs.append(inputs_name[3])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3807 3808 3809 3810 3811 3812 3813 3814
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
S
SunAhong1993 已提交
3815
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3816 3817 3818 3819 3820 3821 3822
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3823 3824
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3825 3826 3827 3828
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3829 3830 3831 3832 3833
    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    return current_inputs, current_outputs


def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
3849
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3863
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3873
        scope_name=scope_name,
S
SunAhong1993 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
        **layer_attrs)
    return current_inputs, current_outputs


def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
S
SunAhong1993 已提交
3887
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3888 3889 3890 3891 3892 3893 3894 3895
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
S
SunAhong1993 已提交
3896 3897
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3898 3899 3900 3901 3902 3903 3904 3905
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3906
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3907 3908 3909 3910
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
3911
        "paddle.transpose",
S
SunAhong1993 已提交
3912 3913
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3914
        scope_name=scope_name,
S
SunAhong1993 已提交
3915 3916 3917 3918
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
def aten_pixel_shuffle(mapper, graph, node):
    """ 构造以像素的方式重排的PaddleLayer。
    TorchScript示例:
        %x.6 : aten::pixel_shuffle(%input.101, %726)
        参数含义:
        %x.6 (Tensor): 输出,重排后的Tensor。
        %input.101 (Tensor): 需要重排的Tensor。
        %726 (int): 增大空间分辨率的增大因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.101
S
SunAhong1993 已提交
3937 3938
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%726
    layer_attrs["upscale_factor"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.functional.pixel_shuffle",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
3952

S
SunAhong1993 已提交
3953 3954 3955 3956 3957 3958 3959 3960
def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
S
SunAhong1993 已提交
3961
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3962 3963 3964 3965 3966 3967 3968 3969
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
3970 3971
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3972 3973 3974 3975 3976
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3977
        layer_attrs["y"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3978 3979
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3980 3981
                            current_outputs, scope_name)
        layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
3982 3983 3984
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
3985
        "paddle.pow",
S
SunAhong1993 已提交
3986 3987
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3988
        scope_name=scope_name,
S
SunAhong1993 已提交
3989 3990 3991 3992
        **layer_attrs)
    return current_inputs, current_outputs


3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010
def aten_prelu(mapper, graph, node):
    """ 构造prelu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : aten::prelu(%input.150, %999)
        参数含义:
        %result.3 (Tensor): 输出,prelu后的结果。
        %input.150 (Tensor): 需要prelu的Tensor。
        %999 (Tnsor): 权重。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.150
S
SunAhong1993 已提交
4011 4012
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
4013 4014 4015 4016 4017 4018 4019 4020
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%999
    weight = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + "._weight"] = weight
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4021 4022 4023 4024
        "paddle.nn.PReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
4025 4026 4027 4028
        num_parameters=weight.shape[0])
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
def aten_reflection_pad1d(mapper, graph, node):
    """ 构造1维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad1d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4048 4049
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4065

S
add gru  
SunAhong1993 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reflection_pad2d(mapper, graph, node):
    """ 构造2维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad2d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4094 4095
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4111

S
add gru  
SunAhong1993 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120
    graph.add_layer(
        "paddle.nn.Pad2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4130 4131
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4132
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4133
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4134 4135 4136 4137 4138
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4139 4140
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4141 4142 4143 4144 4145
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4146 4147 4148 4149
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
    return current_inputs, current_outputs


def aten_relu_(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu_(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4162 4163
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4164
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4165
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4166 4167 4168 4169 4170
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4171 4172
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4173 4174 4175 4176 4177
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4178 4179 4180 4181
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
    return current_inputs, current_outputs


def aten_relu6(mapper, graph, node):
    """ 构造ReLU6激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4194 4195
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu6", mapper.nn_name2id)
S
SunAhong1993 已提交
4196
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4197
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4198 4199 4200 4201 4202
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4203 4204
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4205 4206 4207 4208 4209
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4210 4211 4212 4213
        "paddle.nn.ReLU6",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
    return current_inputs, current_outputs


def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
        701 : Tensor = aten::repeat(%699, %700)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
S
SunAhong1993 已提交
4226
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4227 4228 4229 4230 4231 4232 4233 4234
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
S
SunAhong1993 已提交
4235 4236
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4237 4238 4239 4240 4241 4242 4243 4244
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4245
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4246 4247 4248 4249 4250 4251 4252
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4253
        scope_name=scope_name,
S
SunAhong1993 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
S
SunAhong1993 已提交
4267
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4268 4269 4270 4271 4272 4273 4274 4275
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4276 4277
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4278 4279 4280 4281 4282 4283 4284 4285
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4286
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4287 4288
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
4289

S
SunAhong1993 已提交
4290
    graph.add_layer(
S
SunAhong1993 已提交
4291
        "paddle.reshape",
S
SunAhong1993 已提交
4292 4293
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4294
        scope_name=scope_name,
S
SunAhong1993 已提交
4295 4296 4297 4298
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
def aten_roll(mapper, graph, node):
    """ 构造循环滚动的PaddleLayer。
    TorchScript示例:
        %x.87 : Float = aten::roll(%x.86, %1862, %1863)
        参数含义:
        %x.87 (Tensor): 输出Tensor。
        %x.86 (Tensor): 输入Tensor。
        %1862 (int/list/tuple): 滚动位移。
        %1863 (int/list/tuple): 滚动轴。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1862
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shifts"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shifts"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%1863
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.roll",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。
    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
S
SunAhong1993 已提交
4359
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4360 4361 4362 4363 4364 4365 4366 4367
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
S
SunAhong1993 已提交
4368 4369
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4370 4371
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
S
SunAhong1993 已提交
4372 4373
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4374 4375
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
S
SunAhong1993 已提交
4376 4377
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4378 4379 4380 4381
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4382 4383 4384 4385 4386
    graph.add_layer(
        "prim.rsub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
    return current_inputs, current_outputs


def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。
    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。
    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
S
SunAhong1993 已提交
4399
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4400 4401 4402 4403 4404 4405 4406 4407
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
4408 4409
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4410 4411 4412 4413 4414 4415
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
S
SunAhong1993 已提交
4416 4417 4418 4419
            "prim.equal",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。
    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
S
SunAhong1993 已提交
4437
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4438 4439 4440 4441 4442 4443 4444 4445
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
S
SunAhong1993 已提交
4446 4447
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4448 4449 4450 4451
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
S
SunAhong1993 已提交
4452 4453
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4454 4455 4456 4457 4458 4459 4460 4461
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
        outputs=current_outputs,
S
SunAhong1993 已提交
4462
        scope_name=scope_name,
S
SunAhong1993 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
        **layer_attrs)
    return current_inputs, current_outputs


def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。
    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
S
SunAhong1993 已提交
4476
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4477 4478 4479 4480 4481
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
S
SunAhong1993 已提交
4482 4483
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4484 4485
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
S
SunAhong1993 已提交
4486 4487
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4488 4489
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
S
SunAhong1993 已提交
4490 4491
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4492 4493 4494 4495
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4496 4497
    graph.add_layer(
        "prim.set_item", inputs=layer_inputs, outputs=[], scope_name=scope_name)
S
SunAhong1993 已提交
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
    return current_inputs, current_outputs


def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
4509 4510
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("sigmoid", mapper.nn_name2id)
S
SunAhong1993 已提交
4511
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4512
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4513 4514 4515 4516 4517
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
S
SunAhong1993 已提交
4518 4519
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4520 4521 4522 4523 4524
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4525 4526 4527 4528
        "paddle.nn.Sigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
    return current_inputs, current_outputs


def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
4540
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4541 4542 4543 4544 4545 4546 4547
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
4548 4549
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4550 4551 4552 4553
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4554 4555 4556 4557 4558
    graph.add_layer(
        "paddle.sin",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
    return current_inputs, current_outputs


def aten_size(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。
    TorchScript示例:
        %73 : int[] = aten::size(%x.12, %10)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
        %10 (int): 非必须,代表维度。
    """
S
SunAhong1993 已提交
4571
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4572 4573 4574 4575 4576 4577 4578 4579
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
4580 4581
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4591
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4592 4593 4594 4595 4596 4597
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
4598
            scope_name=scope_name,
S
SunAhong1993 已提交
4599 4600 4601 4602
            **layer_attrs)
        return current_inputs, current_outputs

    graph.add_layer(
S
SunAhong1993 已提交
4603 4604 4605 4606
        "prim.shape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
    return current_inputs, current_outputs


def aten_slice(mapper, graph, node):
    """ 构造切分list或Variable的PaddleLayer。
    TorchScript示例:
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
        参数含义:
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
        %_81 (int): 切分的维度,不一定存在。
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
4622
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4623 4624 4625 4626 4627 4628 4629 4630 4631
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4632 4633
                            current_outputs, scope_name)
        layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
S
SunAhong1993 已提交
4643
                scope_name=scope_name,
S
SunAhong1993 已提交
4644 4645 4646
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4647
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4648 4649 4650
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
S
SunAhong1993 已提交
4651 4652
                outputs=[inputs_name[1] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
        # 处理输入2,即%82
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
S
SunAhong1993 已提交
4663
                scope_name=scope_name,
S
SunAhong1993 已提交
4664 4665 4666
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
4667
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4668 4669 4670
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
S
SunAhong1993 已提交
4671 4672
                outputs=[inputs_name[2] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
4683
                scope_name=scope_name,
S
SunAhong1993 已提交
4684 4685 4686
                input0=mapper.attrs[inputs_name[3]])
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
4687
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4688 4689 4690
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
S
SunAhong1993 已提交
4691 4692
                outputs=[inputs_name[3] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
S
SunAhong1993 已提交
4703
                scope_name=scope_name,
S
SunAhong1993 已提交
4704 4705 4706
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
4707
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4708 4709 4710
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
S
SunAhong1993 已提交
4711 4712
                outputs=[inputs_name[4] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4713 4714 4715 4716 4717 4718
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
S
SunAhong1993 已提交
4719
            "paddle.strided_slice",
S
SunAhong1993 已提交
4720
            inputs=layer_inputs,
S
SunAhong1993 已提交
4721 4722
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4723 4724 4725
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4726
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4727 4728 4729
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4730
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4731 4732 4733
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
4734
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4735 4736 4737
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
4738
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4739 4740 4741 4742 4743
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
S
SunAhong1993 已提交
4744 4745 4746 4747
            "prim.slice",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。
    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
S
SunAhong1993 已提交
4761 4762
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softmax", mapper.nn_name2id)
S
SunAhong1993 已提交
4763
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4764
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4765 4766 4767 4768 4769 4770
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
4771 4772
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4782
        scope_name=scope_name,
S
SunAhong1993 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。
    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
S
SunAhong1993 已提交
4797 4798
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softplus", mapper.nn_name2id)
S
SunAhong1993 已提交
4799
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4800
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4801 4802 4803 4804 4805 4806
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
4807 4808
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4819
        scope_name=scope_name,
S
SunAhong1993 已提交
4820 4821 4822 4823
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
def aten_split_with_sizes(mapper, graph, node):
    """ 构构造split的PaddleLayer。
    TorchScript示例:
        %1450 : Tensor[] = aten::split_with_sizes(%1446, %1750, %41)
        参数含义:
        %1450 (Tensor): 输出,split后的Tensor。
        %1446 (Tensor): 需要获取split的Tensor。
        %1750 (list): 子Tensor的数量列表。
        %41 (int): 需要分割的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1446
S
SunAhong1993 已提交
4843 4844
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1750
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%135
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4874 4875 4876 4877 4878 4879 4880 4881
def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
S
SunAhong1993 已提交
4882
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4883 4884 4885 4886 4887 4888 4889
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
4890 4891
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4892 4893 4894 4895 4896
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4897 4898 4899 4900
        "paddle.sqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
    return current_inputs, current_outputs


def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。
    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
S
SunAhong1993 已提交
4913
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4914 4915 4916 4917 4918 4919 4920 4921
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
S
SunAhong1993 已提交
4922 4923
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4924 4925 4926 4927 4928 4929 4930 4931
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4932
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4933 4934 4935
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
4936
        "paddle.squeeze",
S
SunAhong1993 已提交
4937 4938
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4939
        scope_name=scope_name,
S
SunAhong1993 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
S
SunAhong1993 已提交
4953
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4954 4955 4956 4957 4958 4959 4960 4961
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
4962 4963
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4964 4965 4966 4967 4968 4969 4970 4971
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4972
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4973 4974 4975 4976 4977 4978
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4979
        scope_name=scope_name,
S
SunAhong1993 已提交
4980 4981 4982 4983 4984 4985 4986
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
4987
        %840 : int = aten::sub(%839, %836, %3)
S
SunAhong1993 已提交
4988 4989 4990 4991
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
S
SunAhong1993 已提交
4992
        %3 (-): alpha。
S
SunAhong1993 已提交
4993
    """
S
SunAhong1993 已提交
4994
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4995 4996 4997
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
4998
    layer_attrs = {}
S
SunAhong1993 已提交
4999 5000 5001 5002
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
S
SunAhong1993 已提交
5003 5004
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5005 5006 5007
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
    mapper._check_input(
S
SunAhong1993 已提交
5008 5009 5010 5011 5012 5013
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
5014
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025
    # 处理输入2,即%3
    if len(inputs_node) > 2:
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
    else:
        layer_attrs["alpha"] = 1.0
S
SunAhong1993 已提交
5026 5027 5028
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5029 5030 5031 5032 5033 5034
    graph.add_layer(
        "prim.sub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
5035 5036 5037
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
def aten_sub_(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub_(%839, %836, %3)
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
        %3 (-): alpha。
    """
    return aten_sub(mapper, graph, node)

S
SunAhong1993 已提交
5050

S
SunAhong1993 已提交
5051 5052 5053 5054 5055 5056 5057 5058
def aten_t(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
5059
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5060 5061 5062 5063 5064 5065 5066
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5067 5068
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5069 5070 5071 5072 5073
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5074
        "paddle.transpose",
S
SunAhong1993 已提交
5075 5076
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5077
        scope_name=scope_name,
S
SunAhong1993 已提交
5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
        perm=[1, 0])
    return current_inputs, current_outputs


def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5090 5091
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("tanh", mapper.nn_name2id)
S
SunAhong1993 已提交
5092
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5093
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5094 5095 5096 5097 5098
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
5099 5100
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5101 5102 5103 5104 5105
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5106 5107 5108 5109
        "paddle.nn.Tanh",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
        %723 (int): 轴。
    """
S
SunAhong1993 已提交
5123
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5124 5125 5126 5127 5128 5129 5130 5131
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
S
SunAhong1993 已提交
5132 5133
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5134
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5135
    # 处理输入2,即%723
S
SunAhong1993 已提交
5136 5137
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5138
    layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
5139
    # 处理输入1,即%135
S
SunAhong1993 已提交
5140 5141
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5142 5143 5144 5145 5146 5147 5148 5149 5150
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
        layer_attrs["num_or_sections"] = 1
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5151
        "paddle.split",
S
SunAhong1993 已提交
5152 5153
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5154
        scope_name=scope_name,
S
SunAhong1993 已提交
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
        **layer_attrs)
    return current_inputs, current_outputs


def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
S
SunAhong1993 已提交
5169
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5170 5171 5172 5173 5174 5175 5176 5177
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
S
SunAhong1993 已提交
5178 5179
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5180 5181
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
S
SunAhong1993 已提交
5182 5183
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5184 5185
    dim1 = inputs_name[1]
    # 处理输入2,即%705
S
SunAhong1993 已提交
5186 5187
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5188 5189
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
5190
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
5191
    graph.add_layer(
S
SunAhong1993 已提交
5192
        "prim.shape",
S
SunAhong1993 已提交
5193
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
5194 5195
        outputs=[output_name + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5196 5197 5198 5199
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
S
SunAhong1993 已提交
5200 5201
        outputs=[output_name + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5202 5203 5204 5205 5206
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
S
SunAhong1993 已提交
5207 5208
        outputs=[output_name + "_list"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5209 5210 5211 5212 5213 5214
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
S
SunAhong1993 已提交
5215 5216
        outputs=[dim1 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5217 5218 5219 5220
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
S
SunAhong1993 已提交
5221 5222
        outputs=[dim2 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5223 5224 5225 5226 5227 5228 5229
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
S
SunAhong1993 已提交
5230 5231
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5232 5233 5234 5235 5236 5237 5238
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
S
SunAhong1993 已提交
5239 5240
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5241
    graph.add_layer(
S
SunAhong1993 已提交
5242
        "paddle.transpose",
S
SunAhong1993 已提交
5243 5244
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5245
        scope_name=scope_name,
S
SunAhong1993 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
        perm=output_name + "_list")
    return current_inputs, current_outputs


def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。
    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
S
SunAhong1993 已提交
5259
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5260 5261 5262 5263 5264 5265 5266 5267
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5268 5269
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
S
SunAhong1993 已提交
5280
        "paddle.cast",
S
SunAhong1993 已提交
5281 5282
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5283
        scope_name=scope_name,
S
SunAhong1993 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
        **layer_attrs)
    return current_inputs, current_outputs


def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。
    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
S
SunAhong1993 已提交
5297
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5298 5299 5300 5301 5302 5303 5304
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
S
SunAhong1993 已提交
5305 5306
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5307 5308 5309 5310
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
5311 5312
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5313 5314 5315
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5316 5317
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5318 5319 5320 5321
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
5322 5323 5324 5325
        "paddle.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337
    return current_inputs, current_outputs


def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。
    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
S
SunAhong1993 已提交
5338
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5339 5340 5341 5342 5343 5344 5345 5346
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5347 5348
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5349 5350 5351 5352 5353 5354 5355 5356
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5357
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5358 5359 5360
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5361
        "paddle.unsqueeze",
S
SunAhong1993 已提交
5362 5363
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5364
        scope_name=scope_name,
S
SunAhong1993 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380
        **layer_attrs)
    return current_inputs, current_outputs


def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
S
SunAhong1993 已提交
5381
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5382 5383 5384 5385 5386 5387 5388 5389
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5390 5391
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5392 5393 5394 5395 5396 5397 5398 5399
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5400
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5401 5402 5403 5404 5405 5406
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
S
SunAhong1993 已提交
5407
            scope_name=scope_name,
S
SunAhong1993 已提交
5408
            cls="paddle.fluid.Variable")
S
SunAhong1993 已提交
5409
        # TODO(syf): paddle.Variable
S
SunAhong1993 已提交
5410 5411
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
S
SunAhong1993 已提交
5412 5413
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
S
SunAhong1993 已提交
5414
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
5415 5416
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5417 5418 5419
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5420 5421
            outputs=[inputs_name[1]],
            scope_name=scope_name)
S
SunAhong1993 已提交
5422
        if_layer.add_block(block)
S
SunAhong1993 已提交
5423 5424
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5425 5426 5427 5428 5429 5430 5431
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5432
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5433 5434
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
S
fix2  
SunAhong1993 已提交
5435 5436 5437 5438
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
5439
    layer_attrs["align_mode"] = 0
C
channingss 已提交
5440
    layer_attrs["mode"] = string("bilinear")
S
SunAhong1993 已提交
5441 5442 5443 5444
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5445
        scope_name=scope_name,
S
SunAhong1993 已提交
5446 5447 5448
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
5449

S
SunAhong1993 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469
def aten_upsample_nearest2d(mapper, graph, node):
    """ 构造使用nearest上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_nearest2d(%x.13, %4963, %5421, %4995)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5470 5471
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            scope_name=scope_name,
            cls="paddle.fluid.Variable")
        # TODO(syf): paddle.Variable
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
5495 5496
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5497 5498 5499 5500 5501 5502
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]],
            scope_name=scope_name)
        if_layer.add_block(block)
S
SunAhong1993 已提交
5503 5504
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5505 5506
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
fix  
SunAhong1993 已提交
5507 5508 5509 5510
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
    layer_attrs["align_mode"] = 0
    layer_attrs["mode"] = string("nearest")
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
5521

S
SunAhong1993 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
def aten_values(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %5 : Float(1, *, 1024, 2048)[] = aten::values(%1)
        参数含义:
        %5 (list): 输出,由字典获取的values的list。
        %1 (dict): 字典。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
5538 5539
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5540 5541 5542 5543
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5544 5545 5546 5547 5548
    graph.add_layer(
        "prim.dict2values",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5549 5550 5551
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。
    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
S
SunAhong1993 已提交
5566
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5567 5568 5569 5570 5571 5572 5573 5574
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
S
SunAhong1993 已提交
5575 5576
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5577 5578 5579 5580 5581 5582 5583 5584
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5585
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5586 5587 5588
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5589
        "paddle.reshape",
S
SunAhong1993 已提交
5590 5591
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5592
        scope_name=scope_name,
S
SunAhong1993 已提交
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
        **layer_attrs)
    return current_inputs, current_outputs


def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。
    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
S
SunAhong1993 已提交
5605
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5606 5607 5608 5609 5610 5611 5612 5613
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
S
SunAhong1993 已提交
5614 5615
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5616 5617 5618 5619 5620 5621 5622 5623
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5624
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5625 5626 5627 5628 5629 5630 5631
        layer_inputs["stacklevel"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5632
        scope_name=scope_name,
S
SunAhong1993 已提交
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
        **layer_attrs)
    return current_inputs, current_outputs


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
S
SunAhong1993 已提交
5647
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5648 5649 5650 5651 5652 5653 5654
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
S
SunAhong1993 已提交
5655 5656
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5657 5658
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
5659 5660
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5661 5662
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
5663 5664
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5665 5666 5667 5668
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5669 5670 5671 5672 5673
    graph.add_layer(
        "paddle.where",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
5689
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5703
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5713
        scope_name=scope_name,
S
SunAhong1993 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
        **layer_attrs)
    return current_inputs, current_outputs


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
S
SunAhong1993 已提交
5731
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5732 5733 5734 5735 5736 5737 5738 5739
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
S
SunAhong1993 已提交
5740 5741
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5752
        scope_name=scope_name,
S
SunAhong1993 已提交
5753 5754
        **layer_attrs)
    return current_inputs, current_outputs