aten.py 209.9 KB
Newer Older
S
SunAhong1993 已提交
1
# -*- coding:UTF-8 -*-
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
16
import copy
S
SunAhong1993 已提交
17
import numpy as np
S
SunAhong1993 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
from x2paddle.core.util import *
from x2paddle.core.program import PaddleGraph

dtype_dict = {
    0: string("uint8"),
    1: string("int8"),
    2: string("int16"),
    3: string("int32"),
    4: string("int64"),
    5: string("float16"),
    6: string("float32"),
    7: string("float64"),
    11: string("bool")
}


def aten_abs(mapper, graph, node):
    """ 构造获取绝对值的PaddleLayer。
    TorchScript示例:
        %n0.3 : Tensor = aten::abs(%n.3)
        参数含义:
        %n0.3 (Tensor): 绝对值后的Tensor。
        %n.3 (Tensor): 绝对值前的Tensor。
    """
S
SunAhong1993 已提交
42
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
43 44 45 46 47 48 49
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.3
S
SunAhong1993 已提交
50 51
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
52 53 54 55 56
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
57 58 59 60
        "paddle.abs",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
61 62 63
    return current_inputs, current_outputs


S
SunAhong1993 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
def aten_adaptive_avg_pool1d(mapper, graph, node):
    """ 构造average adaptive pool1d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool1d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的长度大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]][0]
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool1D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.getitem",
            inputs={"list": layer_inputs["output_size"]},
            outputs=[layer_inputs["output_size"]],
            scope_name=scope_name,
            index=0)
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool1d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
117 118 119 120 121 122 123 124 125
def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。
    TorchScript示例:
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
S
SunAhong1993 已提交
126 127
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
128
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
129
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
130 131 132 133 134 135
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
136 137
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
138
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
139 140 141 142
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
143
        layer_attrs["output_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
144 145 146 147 148 149
        graph.add_layer(
            "paddle.nn.AdaptiveAvgPool2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
150 151
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
152 153
                            current_outputs, scope_name)
        layer_inputs["output_size"] = inputs_name[1]
S
SunAhong1993 已提交
154
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
155 156 157 158 159 160
        graph.add_layer(
            "paddle.nn.functional.adaptive_avg_pool2d",
            inputs=layer_inputs,
            outputs=layer_outputs[1:],
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    return current_inputs, current_outputs


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。
    TorchScript示例:
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
S
SunAhong1993 已提交
176
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
177 178 179 180 181 182 183 184 185
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%150
    mapper._check_input(
S
SunAhong1993 已提交
186 187 188 189 190 191
        graph,
        inputs_node[0],
        inputs_name[0],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
192 193
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
194 195
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
196 197
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
198 199
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
200 201 202 203 204 205 206 207
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
208
                            current_outputs, scope_name)
S
SunAhong1993 已提交
209 210 211 212 213 214 215
        layer_inputs["beta"] = inputs_name[3]
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
216
                            current_outputs, scope_name)
S
SunAhong1993 已提交
217 218 219 220 221 222 223
        layer_inputs["alpha"] = inputs_name[4]
        current_inputs.append(inputs_name[4])

    graph.add_layer(
        "paddle.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
224
        scope_name=scope_name,
S
SunAhong1993 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237
        **layer_attrs)
    return current_inputs, current_outputs


def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %296 : int = aten::add(%i.12, %288)
        参数含义:
        %296 (-): 相加结果。
        %i.12 (-): 输入数值 x。
        %288 (-): 输入数值 y。
    """
S
SunAhong1993 已提交
238
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
239 240 241 242 243 244 245
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
246 247
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
248 249 250
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
S
SunAhong1993 已提交
251 252 253 254 255 256
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
257 258 259 260
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
261 262 263 264 265
    graph.add_layer(
        "prim.add",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
    return current_inputs, current_outputs


def aten_add_(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
    TorchScript示例:
        %137 : Tensor = aten::add(%136, %130, %130)
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
S
SunAhong1993 已提交
279
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
280 281 282 283 284 285 286 287
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
288 289
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
290 291 292
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
    mapper._check_input(
S
SunAhong1993 已提交
293 294 295 296 297 298
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
299 300 301 302 303 304 305 306
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%151
    if inputs_name[2] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
307
                            current_outputs, scope_name)
S
SunAhong1993 已提交
308 309 310 311
        layer_inputs["alpha"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
312 313 314 315 316
        "prim.add_",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
317 318 319 320 321 322 323 324 325 326 327 328
    return current_inputs, current_outputs


def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。
    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
S
SunAhong1993 已提交
329
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
330 331 332 333 334 335 336
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
337 338
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
339 340
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
S
SunAhong1993 已提交
341 342
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
343 344 345 346
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
347 348 349 350 351
    graph.add_layer(
        "prim.and",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
352 353 354 355 356 357 358 359 360 361 362 363
    return current_inputs, current_outputs


def aten_append(mapper, graph, node):
    """ 构造对list进行append的PaddleLayer。
    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
S
SunAhong1993 已提交
364
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
365 366 367 368 369 370
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    layer_outputs = [inputs_name[0]]
    # 获取当前节点输出的list
    current_outputs = [inputs_name[0]]
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
371 372
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
373 374
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
375 376
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
377 378 379 380
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
381 382 383 384 385
    graph.add_layer(
        "prim.append",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
386 387 388 389 390 391 392 393
    return current_inputs, current_outputs


def aten_arange(mapper, graph, node):
    """ 构造以步长均匀分隔给定数值区间的PaddleLayer。
    TorchScript示例:
        有三种情况,分别处理。
    """
S
SunAhong1993 已提交
394
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    if len(inputs_name) == 5:
        # %position_ids.1 : Tensor = aten::arange(%52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%52,代表end
        if inputs_name[0] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
411
                                current_outputs, scope_name)
S
SunAhong1993 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
            layer_inputs["end"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%43,代表dtype
        if mapper.attrs[inputs_name[1]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]
    elif len(inputs_name) == 6:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
427
                                current_outputs, scope_name)
S
SunAhong1993 已提交
428 429 430 431 432 433 434
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
435
                                current_outputs, scope_name)
S
SunAhong1993 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%43,代表dtype
        if mapper.attrs[inputs_name[2]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    elif len(inputs_name) == 7:
        # %position_ids.1 : Tensor = aten::arange(%51, %52, %53, %43, %45, %42, %46)
        # 输入的后三者分别代表layout、device、是否使用梯度
        # 处理输入0,即%51,代表start
        if inputs_name[0] in mapper.attrs:
            layer_attrs["start"] = mapper.attrs[inputs_name[0]]
        else:
            mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
451
                                current_outputs, scope_name)
S
SunAhong1993 已提交
452 453 454 455 456 457 458
            layer_inputs["start"] = inputs_name[0]
            current_inputs.append(inputs_name[0])
        # 处理输入1,即%52,代表end
        if inputs_name[1] in mapper.attrs:
            layer_attrs["end"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
459
                                current_outputs, scope_name)
S
SunAhong1993 已提交
460 461 462 463 464 465 466
            layer_inputs["end"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        # 处理输入2,即%53,代表step
        if inputs_name[2] in mapper.attrs:
            layer_attrs["step"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
467
                                current_outputs, scope_name)
S
SunAhong1993 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
            layer_inputs["step"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
        # 处理输入3,即%43,代表dtype
        if mapper.attrs[inputs_name[3]] is None:
            layer_attrs["dtype"] = None
        else:
            layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[3]]]
    else:
        raise Exception("Unknown aten::arange signature taking " + str(
            len(inputs_name)) + " arguments.")

    graph.add_layer(
        "paddle.arange",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
483
        scope_name=scope_name,
S
SunAhong1993 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        **layer_attrs)
    return current_inputs, current_outputs


def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
S
SunAhong1993 已提交
502 503
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
504
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
505
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
506 507 508 509 510 511
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
512 513
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
514 515 516 517
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
518
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
519
    # 处理输入2,即%539
S
SunAhong1993 已提交
520
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
521
    # 处理输入3,即%540
S
SunAhong1993 已提交
522
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
523 524 525 526 527 528 529 530
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
531
        outputs=[inputs_name[6] + "_assert"],
S
SunAhong1993 已提交
532
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
S
SunAhong1993 已提交
533 534 535
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
S
SunAhong1993 已提交
536 537

    graph.add_layer(
S
SunAhong1993 已提交
538
        kernel="paddle.nn.AvgPool2D",
S
SunAhong1993 已提交
539
        inputs=layer_inputs,
S
SunAhong1993 已提交
540
        outputs=layer_outputs,
S
SunAhong1993 已提交
541 542
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
543

S
SunAhong1993 已提交
544 545
    return current_inputs, current_outputs

S
SunAhong1993 已提交
546

S
SunAhong1993 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def aten_avg_pool3d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
571 572
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
573 574 575 576
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
577
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
578
    # 处理输入2,即%539
S
SunAhong1993 已提交
579
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
580
    # 处理输入3,即%540
S
SunAhong1993 已提交
581
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

S
SunAhong1993 已提交
596
    graph.add_layer(
S
SunAhong1993 已提交
597
        kernel="paddle.nn.AvgPool3D",
S
SunAhong1993 已提交
598
        inputs=layer_inputs,
S
SunAhong1993 已提交
599
        outputs=layer_outputs,
S
SunAhong1993 已提交
600 601 602 603 604
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
fix  
SunAhong1993 已提交
605
def aten_avg_pool1d(mapper, graph, node):
S
SunAhong1993 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool1d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
S
SunAhong1993 已提交
629 630
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
631 632 633 634
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
S
SunAhong1993 已提交
635
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
636
    # 处理输入2,即%539
S
SunAhong1993 已提交
637
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
638
    # 处理输入3,即%540
S
SunAhong1993 已提交
639
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6] + "_assert"],
        scope_name=scope_name if scope_name == "" else scope_name + "_assert",
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)

    graph.add_layer(
S
SunAhong1993 已提交
655
        kernel="paddle.nn.AvgPool1D",
S
SunAhong1993 已提交
656
        inputs=layer_inputs,
S
SunAhong1993 已提交
657
        outputs=layer_outputs,
S
SunAhong1993 已提交
658
        scope_name=scope_name,
S
SunAhong1993 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        **layer_attrs)
    return current_inputs, current_outputs


def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。
    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
680 681
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("batchnorm", mapper.nn_name2id)
S
SunAhong1993 已提交
682
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
683
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
684 685 686 687 688 689 690
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
691 692
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
693 694 695 696 697
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
698
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
699 700 701 702 703
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
704
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
705
    else:
S
SunAhong1993 已提交
706
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
707 708
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
S
SunAhong1993 已提交
709
    mapper.paddle_params[op_name + "._mean"] = mean
S
SunAhong1993 已提交
710 711
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
S
SunAhong1993 已提交
712
    mapper.paddle_params[op_name + "._variance"] = var
S
SunAhong1993 已提交
713 714 715 716 717 718 719 720 721
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "paddle.nn.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
722
        scope_name=scope_name,
S
SunAhong1993 已提交
723 724 725 726
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
def aten_bmm(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::bmm(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,矩阵相乘后的结果。
        %i.12 (list): 输入1。
        %7 (int): 输入2。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
S
SunAhong1993 已提交
744 745
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
746 747 748
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
S
SunAhong1993 已提交
749 750 751 752 753 754
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
755 756 757 758
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
759 760 761 762 763
    graph.add_layer(
        "paddle.bmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
764 765 766
    return current_inputs, current_outputs


S
SunAhong1993 已提交
767 768 769 770 771 772 773 774 775
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
S
SunAhong1993 已提交
776
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
777 778 779 780 781 782 783 784
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
785 786
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
787
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
788 789 790 791 792 793 794
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
795
                            current_outputs, scope_name)
S
SunAhong1993 已提交
796 797 798
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
799
        "paddle.concat",
S
SunAhong1993 已提交
800 801
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
802
        scope_name=scope_name,
S
SunAhong1993 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816
        **layer_attrs)
    return current_inputs, current_outputs


def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
S
SunAhong1993 已提交
817
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
818 819 820 821 822 823 824 825
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
S
SunAhong1993 已提交
826 827
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
828
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
829 830 831 832 833 834 835
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
836
                            current_outputs, scope_name)
S
SunAhong1993 已提交
837 838 839 840
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
S
SunAhong1993 已提交
841
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
842 843
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
844 845
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
846 847
        current_inputs.append(inputs_name[2])
    graph.add_layer(
S
SunAhong1993 已提交
848
        "paddle.split",
S
SunAhong1993 已提交
849 850
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
851
        scope_name=scope_name,
S
SunAhong1993 已提交
852 853 854 855
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
def aten_clamp(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp(%input.1, %46, %48, %49)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
        %48 (float/Tensor): 最大值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
875 876
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%48,代表dtype
    if inputs_name[2] in mapper.attrs:
        layer_attrs["max"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["max"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
def aten_clamp_min(mapper, graph, node):
    """ 构造元素剪裁的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::clamp_min(%input.1, %46)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %input.1 (Tensor): 输入,需要剪裁的Tensor。
        %46 (float/Tensor): 最小值。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
924 925
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["min"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.clip",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
947 948 949 950 951 952 953 954 955
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。
    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
956
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
957 958 959 960 961 962 963
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
S
SunAhong1993 已提交
964 965
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
966 967
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
S
SunAhong1993 已提交
968 969
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
970 971 972 973
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
974 975 976 977 978
    graph.add_layer(
        "prim.contain",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991
    return current_inputs, current_outputs


def aten_constant_pad_nd(mapper, graph, node):
    """ 构造填充固定值的PaddleLayer。
    TorchScript示例:
        %58 : Tensor = aten::constant_pad_nd(%input1.24, %4876, %42)
        参数含义:
        %58 (Tensor): 输出,填充后的Tensor。
        %input1.24 (Tensor): 需要填充的Tensor。
        %4876 (list): 填充大小。
        %42 (-): 填充值。
    """
S
SunAhong1993 已提交
992 993
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad", mapper.nn_name2id)
S
SunAhong1993 已提交
994
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
995
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
996 997 998 999 1000 1001
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input1.24
S
SunAhong1993 已提交
1002 1003
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1004 1005 1006 1007 1008 1009
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4876
    layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%42
S
SunAhong1993 已提交
1010
    layer_attrs["value"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
1011 1012

    graph.add_layer(
S
SunAhong1993 已提交
1013
        "prim.shape",
S
SunAhong1993 已提交
1014
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
1015 1016
        outputs=[inputs_name[0] + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1017 1018 1019
    graph.add_layer(
        "prim.len",
        inputs={"input": inputs_name[0] + "_shape"},
S
SunAhong1993 已提交
1020 1021
        outputs=[inputs_name[0] + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1022 1023 1024 1025 1026 1027

    def add_pad_layers(kernel, dim):
        graph.add_layer(
            "prim.ne",
            inputs={"x": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1028
            scope_name=scope_name,
S
SunAhong1993 已提交
1029 1030 1031
            y=dim)
        graph.add_layer(
            "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1032 1033
            outputs=[inputs_name[0] + "_if", output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1034
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1035 1036
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1037 1038 1039 1040
        block.add_layer(
            "prim.sub",
            inputs={"y": inputs_name[0] + "_len"},
            outputs=[inputs_name[0] + "_len0"],
S
SunAhong1993 已提交
1041
            scope_name=scope_name,
S
SunAhong1993 已提交
1042 1043 1044 1045
            x=dim)
        block.add_layer(
            "prim.len2list",
            inputs={"len": inputs_name[0] + "_len0"},
S
SunAhong1993 已提交
1046 1047
            outputs=[inputs_name[0] + "_list"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1048
        block.add_layer(
S
SunAhong1993 已提交
1049
            "paddle.unsqueeze",
S
SunAhong1993 已提交
1050 1051
            inputs={"x": inputs_name[0],
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1052 1053
            outputs=[inputs_name[0] + "_var"],
            scope_name=scope_name)
S
SunAhong1993 已提交
1054 1055 1056
        block.add_layer(
            kernel,
            inputs={"input": inputs_name[0] + "_var"},
S
SunAhong1993 已提交
1057
            outputs=copy.deepcopy(layer_outputs),
S
SunAhong1993 已提交
1058
            scope_name=scope_name,
S
SunAhong1993 已提交
1059 1060
            **layer_attrs)
        block.add_layer(
S
SunAhong1993 已提交
1061
            "paddle.squeeze",
S
SunAhong1993 已提交
1062 1063
            inputs={"x": output_name,
                    "axis": inputs_name[0] + "_list"},
S
SunAhong1993 已提交
1064 1065
            outputs=[output_name],
            scope_name=scope_name)
S
SunAhong1993 已提交
1066
        if_layer.add_block(block)
S
SunAhong1993 已提交
1067 1068
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1069 1070
        layer_inputs["input"] = inputs_name[0]
        block.add_layer(
S
SunAhong1993 已提交
1071 1072 1073 1074 1075
            kernel,
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1076 1077 1078 1079 1080
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[0]
        if_layer.inputs["input-1"] = inputs_name[0] + "_len"

    if len(layer_attrs["padding"]) == 2:
S
add gru  
SunAhong1993 已提交
1081
        layer_outputs[0] = layer_outputs[0].raplace("pad", "pad1d")
S
SunAhong1993 已提交
1082
        add_pad_layers("paddle.nn.Pad1D", 3)
S
SunAhong1993 已提交
1083
    elif len(layer_attrs["padding"]) == 4:
S
add gru  
SunAhong1993 已提交
1084
        layer_outputs[0] = layer_outputs[0].raplace("pad", "pad2d")
S
SunAhong1993 已提交
1085
        add_pad_layers("paddle.nn.Pad2D", 4)
S
SunAhong1993 已提交
1086
    elif len(layer_attrs["padding"]) == 6:
S
add gru  
SunAhong1993 已提交
1087
        layer_outputs[0] = layer_outputs[0].raplace("pad", "pad3d")
S
SunAhong1993 已提交
1088
        add_pad_layers("paddle.nn.Pad3D", 5)
S
SunAhong1993 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    else:
        raise Exception("The lenght of padding list must be 2, 4 or 6!")
    return current_inputs, current_outputs


def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。
    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。
    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
S
SunAhong1993 已提交
1104
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1105 1106 1107 1108 1109 1110 1111 1112
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
S
SunAhong1993 已提交
1113 1114
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1115 1116 1117 1118
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1119 1120 1121 1122 1123
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
    return current_inputs, current_outputs


def aten_conv2d(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
S
SunAhong1993 已提交
1138
        %30 (int): 空洞大小。
S
SunAhong1993 已提交
1139 1140
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
1141 1142
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1143
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1144
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1145 1146 1147 1148 1149 1150
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1151 1152
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1153 1154 1155 1156 1157
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1158
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
1159 1160 1161 1162 1163 1164
    layer_attrs["out_channels"] = weights.shape[0]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1165
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[inputs_name[6]]

    graph.add_layer(
S
SunAhong1993 已提交
1181
        "paddle.nn.Conv2D",
S
SunAhong1993 已提交
1182 1183
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1184
        scope_name=scope_name,
S
SunAhong1993 已提交
1185 1186 1187 1188 1189 1190 1191
        **layer_attrs)
    return current_inputs, current_outputs


def aten__convolution(mapper, graph, node):
    """ 构造conv2d的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
1192
        %input.10 : Tensor = aten::_convolution(%input.1, %18, %10, %19, %20, %21, %13, %22, %12, %13, %13, %15)
S
SunAhong1993 已提交
1193 1194 1195
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
S
SunAhong1993 已提交
1196 1197 1198 1199
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
S
SunAhong1993 已提交
1200
        %21 (list): 空洞大小。
S
SunAhong1993 已提交
1201 1202 1203
        %13 (bool): 是否进行转置卷积。
        %22 (list): 输出形状上一侧额外添加的大小。
        %12 (int): 卷积的组数。
S
SunAhong1993 已提交
1204
    """
S
SunAhong1993 已提交
1205 1206
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
S
SunAhong1993 已提交
1207
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1208
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1209 1210 1211 1212 1213 1214
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1215 1216
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1217 1218 1219
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1220
    # 处理输入1,即%18
S
SunAhong1993 已提交
1221
    weights = mapper.pytorch_params[inputs_name[1]]
S
SunAhong1993 已提交
1222 1223
    mapper.paddle_params[op_name +
                         ".weight"] = weights  #np.swapaxes(weights, 0, 1)
S
SunAhong1993 已提交
1224 1225 1226 1227
    if mapper.attrs[inputs_name[6]]:
        layer_attrs["out_channels"] = weights.shape[1]
    else:
        layer_attrs["out_channels"] = weights.shape[0]
S
SunAhong1993 已提交
1228
    layer_attrs["kernel_size"] = weights.shape[2:]
S
SunAhong1993 已提交
1229
    # 处理输入2,即%10
S
SunAhong1993 已提交
1230 1231 1232
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
S
SunAhong1993 已提交
1233
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
1234 1235 1236 1237
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
1238
    # 处理输入3,即%19
S
SunAhong1993 已提交
1239
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
1240
    # 处理输入4,即%20
S
SunAhong1993 已提交
1241
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1242
    # 处理输入5,即%21
S
SunAhong1993 已提交
1243
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
1244 1245 1246 1247 1248 1249
    # 处理输入6,即%13
    if mapper.attrs[inputs_name[6]]:
        # 处理输入7,即%22
        layer_attrs["output_padding"] = mapper.attrs[inputs_name[7]]
    # 处理输入8,即%12
    layer_attrs["groups"] = mapper.attrs[inputs_name[8]]
S
SunAhong1993 已提交
1250
    if mapper.attrs[inputs_name[6]]:
S
SunAhong1993 已提交
1251 1252
        layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1253
    else:
S
SunAhong1993 已提交
1254 1255
        layer_attrs['in_channels'] = weights.shape[1] * mapper.attrs[
            inputs_name[8]]
S
SunAhong1993 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    if mapper.attrs[inputs_name[6]]:
        graph.add_layer(
            "paddle.nn.Conv2DTranspose",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
    else:
        graph.add_layer(
            "paddle.nn.Conv2D",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
1270 1271 1272
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
def aten_conv_transpose2d(mapper, graph, node):
    """ 构造conv_transpose2d的PaddleLayer。
    TorchScript示例:
        %input.10 : Tensor = aten::conv_transpose2d(%input.1, %18, %10, %19, %20, %21, %13, %22)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %18 (Tensor): weights。
        %10 (Tensor): bias。
        %19 (list): 步长大小。
        %20 (list): 填充大小。
        %21 (int/tuple): 输出形状上一侧额外添加的大小。
        %13 (int): 二维卷积层的组数。
        %22 (int/tuple): 空洞大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("conv2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1298 1299
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%18
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["out_channels"] = weights.shape[1]
    layer_attrs["kernel_size"] = weights.shape[2:]
    # 处理输入2,即%10
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[op_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
    else:
        layer_attrs["bias_attr"] = False
    # 处理输入3,即%19
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%20
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%21
    layer_attrs["output_padding"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%13
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%22
    layer_attrs["dilation"] = mapper.attrs[inputs_name[7]]
S
SunAhong1993 已提交
1327
    layer_attrs['in_channels'] = weights.shape[0] * mapper.attrs[inputs_name[6]]
S
SunAhong1993 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336
    graph.add_layer(
        "paddle.nn.Conv2DTranspose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1337 1338 1339 1340 1341 1342 1343 1344
def aten_cos(mapper, graph, node):
    """ 构造数学计算cos的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::cos(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,cos之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
1345
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1346 1347 1348 1349 1350 1351 1352
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1353 1354
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1355 1356 1357 1358
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1359 1360 1361 1362 1363
    graph.add_layer(
        "paddle.cos",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    return current_inputs, current_outputs


def aten_cumsum(mapper, graph, node):
    """ 构造与前一个元素累加的PaddleLayer。
    TorchScript示例:
        %56 : Tensor = aten::cumsum(%mask.1, %46, %48)
        参数含义:
        %56 (Tensor): 输出,累加后的结果。
        %mask.1 (Tensor): 输入,需要累加的Tensor。
        %46 (int): 累加的维度。
        %48 (int/None): Tensor的类型。
    """
S
SunAhong1993 已提交
1377
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1378 1379 1380 1381 1382 1383 1384 1385
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
1386 1387
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1388 1389 1390 1391 1392 1393 1394 1395
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%46
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1396
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入1,即%48,代表dtype
    if mapper.attrs[inputs_name[2]] is None:
        layer_attrs["dtype"] = None
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.cumsum",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1409
        scope_name=scope_name,
S
SunAhong1993 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        **layer_attrs)
    return current_inputs, current_outputs


def aten_detach(mapper, graph, node):
    """ 构造返回一个新的Tensor,从当前计算图中分离下来的,但是仍指向原变量的存放位置的PaddleLayer。
    TorchScript示例:
        %107 : Tensor = aten::detach(%new_mem.1)
        参数含义:
        %107 (Tensor): 输出,得到的Scalar。
        %new_mem.1 (Tensor): 输入。
    【注意】由于Paddle无此操作,所以此处制转换为赋值。
    """
S
SunAhong1993 已提交
1423
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1424 1425 1426 1427 1428 1429 1430 1431
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
1432 1433
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1434 1435 1436
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1437 1438 1439 1440 1441
    graph.add_layer(
        "prim.equal",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452

    return current_inputs, current_outputs


def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。
    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
S
SunAhong1993 已提交
1453
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1454 1455 1456 1457 1458 1459 1460
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

S
SunAhong1993 已提交
1461 1462 1463 1464 1465
    graph.add_layer(
        "prim.dict",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
    return current_inputs, current_outputs


def aten_dim(mapper, graph, node):
    """ 构造获取维度的PaddleLayer。
    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
1477
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1478 1479 1480 1481 1482 1483
    output_name = mapper._get_outputs_name(node)[0]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
1484 1485
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1486
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1487 1488 1489 1490
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1491 1492 1493 1494
        "prim.shape",
        inputs=layer_inputs,
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1495
    graph.add_layer(
S
SunAhong1993 已提交
1496 1497 1498 1499
        "prim.len",
        inputs={"input": output_name},
        outputs=[output_name],
        scope_name=scope_name)
S
SunAhong1993 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    return current_inputs, current_outputs


def aten_div_(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1519 1520
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1521 1522
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1523 1524
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1525 1526 1527 1528
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1529 1530 1531 1532 1533
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
    return current_inputs, current_outputs


def aten_div(mapper, graph, node):
    """ 构造除法的PaddleLayer。
    TorchScript示例:
        %bx_bw0.3 : Tensor = aten::div_(%bx_bw.3, %2678)
        参数含义:
        %bx_bw0.3 (-): 除后的结果。
        %bx_bw.3 (-): 被除数。
        %2678 (int): 除数。
    """
S
SunAhong1993 已提交
1546
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1547 1548 1549 1550 1551 1552 1553
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1554 1555
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1556 1557
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
1558 1559
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1560 1561 1562 1563
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1564 1565 1566 1567 1568
    graph.add_layer(
        "prim.div",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    return current_inputs, current_outputs


def aten_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1581 1582
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1583
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1584
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1585 1586 1587 1588 1589
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1590 1591
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1592 1593 1594 1595 1596
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1597 1598 1599 1600 1601
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    return current_inputs, current_outputs


def aten_dropout_(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::dropout_(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
1614 1615
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
S
SunAhong1993 已提交
1616
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1617
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1618 1619 1620 1621 1622
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1623 1624
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1625 1626 1627 1628 1629
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1630 1631 1632 1633 1634
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    return current_inputs, current_outputs


def aten_embedding(mapper, graph, node):
    """ 构造embedding的PaddleLayer。
    TorchScript示例:
        %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46)
        参数含义:
        %inputs_embeds.1 (Tensor): 输出,embedding后的结果。
        %57 (Tensor): weights。
        %input_ids.1 (Tensor): 需要进行embedding的特征层。
        %45 (int): padding_idx。
        %46 (bool): scale_grad_by_freq。
        %46 (bool): sparse。
    """
S
SunAhong1993 已提交
1650 1651
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("embedding", mapper.nn_name2id)
S
SunAhong1993 已提交
1652
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1653
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
1654 1655 1656 1657 1658 1659 1660
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%57
    weights = mapper.pytorch_params[inputs_name[0]]
S
SunAhong1993 已提交
1661 1662 1663
    mapper.paddle_params[op_name + ".weight"] = weights
    layer_attrs["num_embeddings"] = weights.shape[0]
    layer_attrs["embedding_dim"] = weights.shape[1]
S
SunAhong1993 已提交
1664
    # 处理输入1,即%input_ids.1
S
SunAhong1993 已提交
1665 1666
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1667 1668 1669 1670 1671 1672 1673 1674 1675
    layer_inputs["input"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%45
    if mapper.attrs[inputs_name[2]] == -1:
        layer_attrs["padding_idx"] = None
    else:
        layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]]
    # 处理输入4,即%46
S
SunAhong1993 已提交
1676
    layer_attrs["sparse"] = mapper.attrs[inputs_name[4]]
S
SunAhong1993 已提交
1677 1678

    graph.add_layer(
S
SunAhong1993 已提交
1679
        "paddle.nn.Embedding",
S
SunAhong1993 已提交
1680 1681
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1682
        scope_name=scope_name,
S
SunAhong1993 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        **layer_attrs)
    return current_inputs, current_outputs


def aten_eq(mapper, graph, node):
    """ 构造判断数值是否相等的PaddleLayer。
    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1696
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1697 1698 1699 1700 1701 1702 1703
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
1704 1705
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1706 1707 1708 1709
    layer_inputs["x"] = inputs_name[0]
    x_value = list(node.inputs())[0]
    x_type = x_value.type()
    # 处理输入1,即%123
S
SunAhong1993 已提交
1710 1711
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1712 1713 1714 1715 1716
    layer_inputs["y"] = inputs_name[1]
    y_value = list(node.inputs())[1]
    y_type = y_value.type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1717 1718 1719 1720 1721
    graph.add_layer(
        "prim.eq",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1722 1723 1724
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
def aten_erf(mapper, graph, node):
    """ 构造逐元素计算 Erf 激活函数的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::erf(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,erf之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行erf的Tensor。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
1741 1742
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1743 1744 1745 1746
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1747 1748 1749 1750 1751
    graph.add_layer(
        "paddle.erf",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1752 1753 1754
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1755 1756 1757 1758 1759 1760 1761 1762
def aten_exp(mapper, graph, node):
    """ 构造以自然数e为底指数运算的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,运算后的结果。
        %54 (Tensor): 需要指数运算的Tensor。
    """
S
SunAhong1993 已提交
1763
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1764 1765 1766 1767 1768 1769 1770
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1771 1772
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1773 1774 1775 1776 1777
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1778 1779 1780 1781
        "paddle.exp",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    return current_inputs, current_outputs


def aten_expand(mapper, graph, node):
    """ 构造对某维度进行广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand(%1875, %1888, %1567)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (int): 广播的维度。
        %1567 (bool): 未使用。
    """
S
SunAhong1993 已提交
1795
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1796 1797 1798
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
1799
    layer_attrs = {}
S
SunAhong1993 已提交
1800 1801 1802 1803
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1804 1805
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1806
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1807 1808 1809 1810 1811 1812 1813 1814 1815
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1816
    graph.add_layer(
S
SunAhong1993 已提交
1817 1818 1819
        "paddle.expand",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1820
        scope_name=scope_name,
S
SunAhong1993 已提交
1821
        **layer_attrs)
S
SunAhong1993 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
    return current_inputs, current_outputs


def aten_expand_as(mapper, graph, node):
    """ 构造广播的PaddleLayer。
    TorchScript示例:
        %1889 : Tensor = aten::expand_as(%1875, %1888)
        参数含义:
        %1889 (Tensor): 广播后的结果。
        %1875 (Tensor): 需要广播的Tensor。
        %1888 (Tensor): 广播的示例。
    """
S
SunAhong1993 已提交
1834
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1835 1836 1837 1838 1839 1840 1841
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1875
S
SunAhong1993 已提交
1842 1843
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1844 1845
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1888
S
SunAhong1993 已提交
1846 1847
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1848
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1849 1850
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1851

S
SunAhong1993 已提交
1852 1853 1854
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
1855 1856
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1857 1858 1859
    graph.add_layer(
        "prim.str",
        inputs={"input": inputs_name[0] + "_type"},
S
SunAhong1993 已提交
1860 1861
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1862 1863 1864 1865
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[0] + "_type"},
        outputs=[inputs_name[0] + "_cond"],
S
SunAhong1993 已提交
1866
        scope_name=scope_name,
S
SunAhong1993 已提交
1867 1868 1869
        y=string("VarType.BOOL"))
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1870 1871
        outputs=[inputs_name[0] + "_if1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1872
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1873 1874
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1875 1876 1877
    block.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
1878 1879
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1880
    block.add_layer(
S
SunAhong1993 已提交
1881
        "paddle.cast",
S
SunAhong1993 已提交
1882 1883
        inputs={"x": inputs_name[0]},
        outputs=[inputs_name[0]],
S
SunAhong1993 已提交
1884
        scope_name=scope_name,
S
SunAhong1993 已提交
1885 1886
        dtype=inputs_name[1] + "_type")
    if_layer.add_block(block)
S
SunAhong1993 已提交
1887 1888
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1889 1890 1891 1892
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.inputs["input-1"] = inputs_name[1]
    graph.add_layer(
S
SunAhong1993 已提交
1893 1894 1895 1896
        "paddle.expand_as",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
1897 1898
    graph.add_layer(
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
1899 1900
        outputs=[inputs_name[0] + "_if2"],
        scope_name=scope_name)
S
SunAhong1993 已提交
1901
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
1902 1903
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1904
    block.add_layer(
S
SunAhong1993 已提交
1905
        "paddle.cast",
S
SunAhong1993 已提交
1906
        inputs={"x": layer_outputs[0]},
S
SunAhong1993 已提交
1907 1908
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name,
S
SunAhong1993 已提交
1909 1910
        dtype=string("bool"))
    if_layer.add_block(block)
S
SunAhong1993 已提交
1911 1912
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
1913 1914
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = layer_outputs[0]
S
SunAhong1993 已提交
1915
    # TODO(syf): check expand_as
S
SunAhong1993 已提交
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    #     # 处理输入0,即%1875
    #     mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name)
    #     layer_inputs["x"] = inputs_name[0]
    #     # 处理输入1,即%1888
    #     mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name)
    #     layer_inputs["y"] = inputs_name[1]
    #     # 获取当前节点输入的list
    #     current_inputs = list(layer_inputs.values())
    #     graph.add_layer(
    #         "paddle.expand_as", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name)
S
SunAhong1993 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    return current_inputs, current_outputs


def aten_eye(mapper, graph, node):
    """ 构造批次二维矩阵的PaddleLayer。
    TorchScript示例:
        %68 : Tensor = aten::eye(%49, %_50, %_51, %15, %9, %67, %7)
        参数含义:
        %68 (Tensor): 输出,构造的矩阵。
        %49 (int): 行数。
        %_50 (int): 列数,非必须。
        %_51 (Tensor): 非必须。
        %9 (int): layout。
        %67 (str): 设备。
        %7 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
1942
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
1943 1944 1945 1946 1947 1948 1949 1950
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%49
S
SunAhong1993 已提交
1951 1952
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1953 1954 1955 1956
    layer_inputs["num_rows"] = inputs_name[0]
    if len(inputs_name) > 5:
        # 处理输入1,即%_50
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
1957
                            current_outputs, scope_name)
S
SunAhong1993 已提交
1958 1959 1960 1961 1962 1963 1964
        layer_inputs["num_columns"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理倒数第4个输入,即%15
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[-4]]]

    graph.add_layer(
S
SunAhong1993 已提交
1965
        "paddle.eye",
S
SunAhong1993 已提交
1966 1967
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1968
        scope_name=scope_name,
S
SunAhong1993 已提交
1969 1970 1971
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
1972

S
SunAhong1993 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
def aten_feature_dropout(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。
    TorchScript示例:
        %119 : Tensor = aten::feature_dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("dropout", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
S
SunAhong1993 已提交
1991 1992
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
1993 1994 1995 1996 1997
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
1998 1999 2000 2001 2002
        "paddle.nn.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        p=0.0)
S
SunAhong1993 已提交
2003 2004
    return current_inputs, current_outputs

S
SunAhong1993 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

def aten_flatten(mapper, graph, node):
    """ 构造flatten的PaddleLayer。
    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。
    """
S
SunAhong1993 已提交
2016
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2017 2018 2019
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
2020
    layer_attrs = {}
S
SunAhong1993 已提交
2021 2022 2023 2024
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x
S
SunAhong1993 已提交
2025 2026
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2027 2028 2029 2030
    # 处理输入1,即%4
    layer_attrs["start_axis"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%20
    layer_attrs["stop_axis"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
2031 2032 2033 2034 2035
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2036
        "paddle.flatten",
S
SunAhong1993 已提交
2037 2038
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2039 2040
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
    return current_inputs, current_outputs


def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。
    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2052
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2053 2054 2055 2056 2057 2058 2059
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
S
SunAhong1993 已提交
2060 2061
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2062 2063 2064 2065
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2066 2067 2068 2069 2070
    graph.add_layer(
        "prim.float",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。
    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
S
SunAhong1993 已提交
2082
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2083 2084 2085 2086 2087 2088 2089
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
S
SunAhong1993 已提交
2090 2091
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2092
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
2093 2094
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2095
    graph.add_layer(
S
SunAhong1993 已提交
2096
        "prim.type", {'input': inputs_name[0]},
S
SunAhong1993 已提交
2097 2098 2099
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2100
        "prim.str", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2101 2102 2103
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
    graph.add_layer(
S
SunAhong1993 已提交
2104
        "prim.startswith", {'input': inputs_name[0] + "_type"},
S
SunAhong1993 已提交
2105 2106
        outputs=[inputs_name[0] + "_cond"],
        scope_name=scope_name,
S
SunAhong1993 已提交
2107
        start_str=string("VarType"))
S
SunAhong1993 已提交
2108
    graph.add_layer(
S
SunAhong1993 已提交
2109
        "prim.if", {'input': inputs_name[0] + "_cond"},
S
SunAhong1993 已提交
2110 2111 2112
        outputs=[inputs_name[0] + "_if"],
        scope_name=scope_name)
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
2113 2114 2115 2116 2117 2118 2119
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
    block.add_layer(
        "paddle.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2120
    if_layer.add_block(block)
S
SunAhong1993 已提交
2121 2122 2123 2124 2125 2126 2127
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
    block.add_layer(
        "prim.floor",
        inputs=copy.deepcopy(layer_inputs),
        outputs=copy.deepcopy(layer_outputs),
        scope_name=scope_name)
S
SunAhong1993 已提交
2128 2129 2130
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[0]
    if_layer.outputs.append(output_name)
S
SunAhong1993 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    return current_inputs, current_outputs


def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2143
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2144 2145 2146 2147 2148 2149 2150
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2151 2152
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2153 2154
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2155 2156
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2157 2158 2159 2160
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2161 2162 2163 2164 2165
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    return current_inputs, current_outputs


def aten_floor_divide(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。
    TorchScript示例:
        %channels_per_group.2 : int = aten::floor_divide(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
        %num_channels.2 (-): 被除数。
        %2 (int): 除数。
    """
S
SunAhong1993 已提交
2178
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2179 2180 2181 2182 2183 2184 2185
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
2186 2187
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2188 2189
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
2190 2191
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2192 2193 2194 2195
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2196 2197 2198 2199 2200
    graph.add_layer(
        "prim.floordiv",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
    return current_inputs, current_outputs


def aten_full_like(mapper, graph, node):
    """ 构造创建一个与输入具有相同的形状并且数据类型固定的Tensor的PaddleLayer。
    TorchScript示例:
        %159 : Tensor = aten::full_like(%val_if_large.3, %51, %50, %62, %53, %65, %66)
        参数含义:
        %159 (Tensor): 输出,全为固定值的Tensor。
        %val_if_large.3 (Tensor): 类似形状的Tensor。
        %51 (int/float/bool): 填充值。
        %50 (int): dtype。
        %62 (int): layout。
        %53 (int): device。
        %65 (bool): 是否计算梯度。
        %66 (int): 内存形式。
    """
S
SunAhong1993 已提交
2218
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2219 2220 2221 2222 2223 2224 2225 2226
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%val_if_large.3
S
SunAhong1993 已提交
2227 2228
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2229 2230 2231 2232 2233 2234 2235 2236
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%51
    if inputs_name[1] in mapper.attrs:
        layer_attrs["fill_value"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2237
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246
        layer_inputs["fill_value"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%50,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]

    graph.add_layer(
        "paddle.full_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2247
        scope_name=scope_name,
S
SunAhong1993 已提交
2248 2249 2250 2251
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
def aten_gather(mapper, graph, node):
    """ 构造gather激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gather(%input.5, %18, %19, %20, %21)
        参数含义:
        %result.3 (Tensor): 输出,gather后的结果。
        %result.5 (Tensor): 需要gather的Tensor。
        %18 (int): 需要gather的维度。
        %19 (Tensor): 需要gather的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gather", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2272 2273
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2274 2275 2276 2277
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%18
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%19
S
SunAhong1993 已提交
2278 2279
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2280 2281 2282
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
2283

S
SunAhong1993 已提交
2284
    graph.add_layer(
S
SunAhong1993 已提交
2285 2286 2287
        "custom_layer:Gather",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2288 2289 2290 2291 2292
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301
def aten_gelu(mapper, graph, node):
    """ 构造GeLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::gelu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,GELU后的结果。
        %result.5 (Tensor): 需要GELU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
2302 2303
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gelu", mapper.nn_name2id)
S
SunAhong1993 已提交
2304
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2305
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2306 2307 2308 2309 2310
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2311 2312
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2313 2314 2315 2316 2317
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2318 2319 2320 2321
        "paddle.nn.GELU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
    return current_inputs, current_outputs


def aten___getitem__(mapper, graph, node):
    """ 构造获取list中元素的PaddleLayer。
    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
2334
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2335 2336 2337 2338 2339 2340 2341
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2342 2343
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2344 2345
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
2346 2347
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2348 2349 2350 2351
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2352 2353 2354 2355 2356
    graph.add_layer(
        "prim.getitem",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    return current_inputs, current_outputs


def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2369
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2370 2371 2372 2373 2374 2375 2376
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
S
SunAhong1993 已提交
2377 2378
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2379 2380
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
S
SunAhong1993 已提交
2381 2382
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2383 2384 2385 2386
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2387 2388 2389 2390 2391
    graph.add_layer(
        "prim.gt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2392 2393 2394
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
def aten_gru(mapper, graph, node):
    """ 构造门控循环单元网络(GRU)的PaddleLayer。
    TorchScript示例:
        %21, %22 = aten::gru(%input, %hx, %20, %11, %10, %9, %11, %8, %11)
        参数含义:
        %21 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %22 (Tensor): 输出,最终状态。
        %input (Tensor): 网络输入。
        %hx (Tensor): 网络的初始状态。
        %20 (list): 所有权重组合成的list。
        %11 (bool): 是否使用bias。
        %10 (int): 网络层数。
        %9 (float): dropout概率。
        %11 (bool): 是否为训练阶段。
        %8 (bool): 是否使用双向LSTM。
        %11 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("gru", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
2423 2424
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2425 2426
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
2427 2428
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2429 2430 2431 2432
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
2433 2434
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2435 2436 2437 2438 2439
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
2440 2441 2442 2443
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 3)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
add gru  
SunAhong1993 已提交
2444 2445
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
2446 2447 2448 2449
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
add gru  
SunAhong1993 已提交
2450 2451
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
2452 2453
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
add gru  
SunAhong1993 已提交
2454
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
2455

S
add gru  
SunAhong1993 已提交
2456 2457 2458 2459 2460
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
2461 2462 2463
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
add gru  
SunAhong1993 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.GRU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
def aten_hardtanh_(mapper, graph, node):
    """ 构造hardtanh激活的PaddleLayer。
    TorchScript示例:
        %result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
S
SunAhong1993 已提交
2495 2496
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("hardtanh", mapper.nn_name2id)
S
SunAhong1993 已提交
2497
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2498
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2499 2500 2501 2502 2503 2504
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.20
S
SunAhong1993 已提交
2505 2506
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2507 2508 2509 2510 2511 2512 2513 2514
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%67
    layer_attrs["min"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%66
    layer_attrs["max"] = mapper.attrs[inputs_name[2]]

S
SunAhong1993 已提交
2515
    if layer_attrs["min"] == 0 and layer_attrs["max"] == 6:
S
SunAhong1993 已提交
2516
        graph.add_layer(
S
SunAhong1993 已提交
2517 2518 2519 2520
            "paddle.nn.ReLU6",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
2521 2522 2523 2524 2525 2526 2527
    else:
        graph.add_layer(
            'paddle.nn.Hardtanh',
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name,
            **layer_attrs)
S
SunAhong1993 已提交
2528 2529 2530
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
def aten_index(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
    TorchScript示例:
        %1681 : Float = aten::index(%1653, %1680)
        参数含义:
        %1681 (Tensor): 输出,选择后的Tensor。
        %1653 (Tensor): 需要选择的Tensor。
        %1680 (int): 选择的索引。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1653
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1680
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
    layer_inputs["index"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.getitem",
        inputs={"list": layer_inputs["index"]},
        outputs=[layer_inputs["index"]],
        scope_name=scope_name,
        index=0)
    graph.add_layer(
        "paddle.index_select",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
2572

S
SunAhong1993 已提交
2573 2574 2575

def aten_index_select(mapper, graph, node):
    """ 构造选择元素的PaddleLayer。
S
SunAhong1993 已提交
2576 2577 2578 2579 2580 2581 2582 2583
    TorchScript示例:
        %bd.3 : Tensor = aten::index_select(%x2.3, %320, %371)
        参数含义:
        %bd.3 (Tensor): 输出,选择后的Tensor。
        %x2.3 (Tensor): 需要选择的Tensor。
        %320 (int): 维度。
        %371 (Tensor): 选择的索引。
    """
S
SunAhong1993 已提交
2584
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2585 2586 2587 2588 2589 2590 2591 2592
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x2.3
S
SunAhong1993 已提交
2593 2594
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2595 2596 2597 2598 2599 2600
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%320
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
2601
                            current_outputs, scope_name)
S
SunAhong1993 已提交
2602 2603 2604
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%371
S
SunAhong1993 已提交
2605 2606
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2607 2608 2609 2610 2611 2612 2613 2614
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.index_select",
        inputs=layer_inputs,
        outputs=current_outputs,
S
SunAhong1993 已提交
2615
        scope_name=scope_name,
S
SunAhong1993 已提交
2616 2617 2618 2619
        **layer_attrs)
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
def aten_instance_norm(mapper, graph, node):
    """构造InstanceNorm的PaddleLayer
    TorchScript示例:
        %res.7 : Tensor = aten::instance_norm(%res.5, %88, %85, %84, %83, %87, %91, %92, %87)
        参数含义:
        %res.7 (Tensor): 输出,InstanceNorm的结果。
        %res.5 (Tensor): 需要进行InstanceNorm的特征层。
        %88 (Tensor): weights。
        %85 (Tensor): bias。
        %84 (Tensor): 全局均值。
        %83 (Tensor): 全局方差。
        %87 (bool): 是否使用输入的统计。
        %91 (float): momentum。
        %92 (float): eps。
        %87 (bool): 是否启用cudnn。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("instance_norm", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
S
SunAhong1993 已提交
2646 2647
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%88
    if inputs_name[1] in mapper.pytorch_params:
        weights = mapper.pytorch_params[inputs_name[1]]
        mapper.paddle_params[op_name + ".weight"] = weights
        layer_attrs['num_features'] = weights.shape[0]
    # 处理输入2,即%85
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        mapper.paddle_params[op_name + ".bias"] = bias
    # 处理输入3,即%84
    if inputs_name[3] in mapper.pytorch_params:
        mean = mapper.pytorch_params[inputs_name[3]]
        mapper.paddle_params[op_name + "._mean"] = mean
    # 处理输入4,即%83
    if inputs_name[4] in mapper.pytorch_params:
        var = mapper.pytorch_params[inputs_name[4]]
        mapper.paddle_params[op_name + "._variance"] = var
    # 处理输入6,即%91
    layer_attrs["momentum"] = 1 - mapper.attrs[inputs_name[6]]
    # 处理输入7,即%92
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "custom_layer:InstanceNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2682 2683 2684 2685 2686 2687 2688 2689
def aten_Int(mapper, graph, node):
    """ 构造强转为int的PaddleLayer。
    TorchScript示例:
        %1739 : int = aten::Int(%1738)
        参数含义:
        %1739 (int): 输出,int型数据。
        %1738 (-): 需要强转的数据。
    """
S
SunAhong1993 已提交
2690
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2691 2692 2693 2694 2695 2696 2697
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1738
S
SunAhong1993 已提交
2698 2699
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2700 2701 2702 2703
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2704 2705 2706 2707 2708
    graph.add_layer(
        "prim.int",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
    return current_inputs, current_outputs


def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2721
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2722 2723 2724 2725 2726 2727 2728
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
2729 2730
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2731 2732
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
2733 2734
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2735 2736 2737 2738
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2739 2740 2741 2742 2743
    graph.add_layer(
        "prim.is",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。
    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2756
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2757 2758 2759 2760 2761 2762 2763
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
S
SunAhong1993 已提交
2764 2765
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2766 2767
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
S
SunAhong1993 已提交
2768 2769
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2770 2771 2772 2773
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2774 2775 2776 2777 2778
    graph.add_layer(
        "prim.isnot",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
    return current_inputs, current_outputs


def aten_layer_norm(mapper, graph, node):
    """ 构造层归一化的PaddleLayer。
    TorchScript示例:
        %input0.4 : Tensor = aten::layer_norm(%input.6, %1181, %174, %173, %70, %71)
        参数含义:
        %input0.4 (Tensor): 输出,层归一化后的结果。
        %input.6 (Tensor): 需要进行层归一化的特征层。
        %1181 (list/int/tuple): 需规范化的shape。
        %174 (Tensor): weights。
        %173 (Tensor): bias。
        %70 (float): 指明在计算过程中是否添加较小的值到方差中以防止除零。
        %71 (bool): 是否启用cudnn。
    """
S
SunAhong1993 已提交
2795 2796
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("layernorm", mapper.nn_name2id)
S
SunAhong1993 已提交
2797
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2798
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2799 2800 2801 2802 2803 2804
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.6
S
SunAhong1993 已提交
2805 2806
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2807 2808 2809 2810 2811 2812 2813
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1181
    layer_attrs["normalized_shape"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%174
    weights = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
2814
    mapper.paddle_params[op_name + ".weight"] = weights
S
SunAhong1993 已提交
2815 2816 2817 2818
    # 处理输入3,即%173
    if inputs_name[3] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[3]]
        if bias is not None:
S
SunAhong1993 已提交
2819
            mapper.paddle_params[op_name + ".bias"] = bias
S
SunAhong1993 已提交
2820
    else:
S
SunAhong1993 已提交
2821
        mapper.paddle_params[op_name + ".bias"] = False
S
SunAhong1993 已提交
2822 2823 2824 2825 2826 2827 2828
    # 处理输入4,即%70
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[4]]

    graph.add_layer(
        "paddle.nn.LayerNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2829
        scope_name=scope_name,
S
SunAhong1993 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
        **layer_attrs)
    return current_inputs, current_outputs


def aten_le(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
2843
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2844 2845 2846 2847 2848 2849 2850
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
2851 2852
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2853 2854
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
2855 2856
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2857 2858 2859 2860
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2861 2862 2863 2864 2865
    graph.add_layer(
        "prim.le",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
    return current_inputs, current_outputs


def aten_leaky_relu_(mapper, graph, node):
    """ 构造leaky relu激活的PaddleLayer。
    TorchScript示例:
        %input.117 : Tensor = aten::leaky_relu_(%input.114, %1570)
        参数含义:
        %input.117 (Tensor): 输出,leaky relu后的结果。
        %input.114 (Tensor): 需要leaky relu的Tensor。
        %1570 (float): 输入中的元素小于0时的斜率。
    """
S
SunAhong1993 已提交
2878 2879
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("leakly_relu", mapper.nn_name2id)
S
SunAhong1993 已提交
2880
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
2881
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2882 2883 2884 2885 2886 2887
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
2888 2889
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1570
    layer_attrs["negative_slope"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.LeakyReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
2900
        scope_name=scope_name,
S
SunAhong1993 已提交
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        **layer_attrs)
    return current_inputs, current_outputs


def aten_len(mapper, graph, node):
    """ 构造获取list长度的PaddleLayer。
    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
2913
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2914 2915 2916 2917 2918 2919 2920
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%72
S
SunAhong1993 已提交
2921 2922
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2923 2924 2925 2926
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
2927 2928 2929 2930 2931
    graph.add_layer(
        "prim.len",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
    return current_inputs, current_outputs


def aten_log(mapper, graph, node):
    """ 构构造log的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::log(%786)
        参数含义:
        %787 (Tensor): 输出,取log的Tensor。
        %786 (Tensor): 需要获取log的Tensor。
    """
S
SunAhong1993 已提交
2943
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
2944 2945 2946 2947 2948 2949 2950
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
2951 2952
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2953 2954 2955 2956 2957
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
2958 2959 2960 2961
        "paddle.log",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
2962 2963 2964
    return current_inputs, current_outputs


S
SunAhong1993 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
def aten_lstm(mapper, graph, node):
    """ 构造长短期记忆网络(LSTM)的PaddleLayer。
    TorchScript示例:
        %input.96, %551, %552 = aten::lstm(%input.95, %734, %549, %526, %525, %524, %526, %526, %526)
        参数含义:
        %input.96 (Tensor): 输出,由前向和后向cell的输出拼接得到。
        %551 (Tensor): cell state。
        %552 (Tensor): hidden state。
        %input.95 (Tensor): 网络输入。
        %734 (Tensor): 网络的初始状态。
        %549 (list): 所有权重组合成的list。
        %526 (bool): 是否使用bias。
        %525 (int): 网络层数。
        %524 (float): dropout概率。
        %526 (bool): 是否为训练阶段。
        %526 (bool): 是否使用双向LSTM。
        %526 (bool): 第一个维度是否为batch size。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("lstm", mapper.nn_name2id)
    output_names = mapper._get_outputs_name(node)
    layer_outputs = [op_name]
    layer_outputs.extend(output_names)
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = output_names
    # 处理输入0,即%input.95
S
SunAhong1993 已提交
2994 2995
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
2996 2997
    layer_inputs["input0"] = inputs_name[0]
    # 处理输入1,即%734
S
SunAhong1993 已提交
2998 2999
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3000 3001 3002 3003
    layer_inputs["input1"] = inputs_name[1]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%734
S
SunAhong1993 已提交
3004 3005
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3006 3007 3008 3009 3010
    graph.layers.pop(mapper.output2id[inputs_name[2]])
    param_inputs_name, _ = mapper._get_inputs_name(inputs_node[2])
    new_param_inputs_name = list()
    for i, param_name in enumerate(param_inputs_name):
        if i == 0:
S
SunAhong1993 已提交
3011 3012 3013 3014
            layer_attrs["hidden_size"] = int(
                mapper.paddle_params[param_name].shape[0] / 4)
            layer_attrs["input_size"] = int(mapper.paddle_params[param_name]
                                            .shape[1])
S
SunAhong1993 已提交
3015 3016
        if len(mapper.paddle_params[param_name].shape) > 1:
            part_name = param_name.split("_weight_")[-1]
S
SunAhong1993 已提交
3017 3018 3019 3020
            mapper.paddle_params["{}.weight_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
            new_param_inputs_name.append("{}.weight_{}".format(op_name,
                                                               part_name))
S
SunAhong1993 已提交
3021 3022
        else:
            part_name = param_name.split("_bias_")[-1]
S
SunAhong1993 已提交
3023 3024
            mapper.paddle_params["{}.bias_{}".format(
                op_name, part_name)] = mapper.paddle_params[param_name]
S
SunAhong1993 已提交
3025
        mapper.paddle_params.pop(param_name)
S
SunAhong1993 已提交
3026

S
SunAhong1993 已提交
3027 3028 3029 3030 3031
    # 处理输入3,即%526
    is_bias = mapper.attrs[inputs_name[3]]
    if not is_bias:
        for param_name in new_param_inputs_name:
            bias_name = param_name.replace("weight", "bias")
S
SunAhong1993 已提交
3032 3033 3034
            bias_shape = mapper.paddle_params[param_name].shape[:1]
            mapper.paddle_params[bias_name] = np.zeros(bias_shape).astype(
                "float32")
S
SunAhong1993 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    # 处理输入4,即%525
    layer_attrs["num_layers"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%524
    layer_attrs["dropout"] = mapper.attrs[inputs_name[5]]
    # 处理输入7,即%526
    is_bidirectional = mapper.attrs[inputs_name[7]]
    if is_bidirectional:
        layer_attrs["direction"] = string("bidirectional")
    # 处理输入8,即%526
    batch_first = mapper.attrs[inputs_name[8]]
    if not batch_first:
        layer_attrs["time_major"] = True
    graph.add_layer(
        "paddle.nn.LSTM",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3065
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3066 3067 3068 3069 3070 3071 3072
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
3073 3074
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3075 3076
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
S
SunAhong1993 已提交
3077 3078
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3079 3080 3081 3082
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3083 3084 3085 3086 3087
    graph.add_layer(
        "prim.lt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
    return current_inputs, current_outputs


def aten_masked_fill_(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。
    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill_(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
3101
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
3111 3112
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3113 3114 3115 3116
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
3117 3118
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3119
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
3120 3121
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3122 3123 3124 3125
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
3126 3127
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3128
    graph.add_layer(
S
SunAhong1993 已提交
3129
        "paddle.cast",
S
SunAhong1993 已提交
3130 3131
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
3132
        scope_name=scope_name,
S
SunAhong1993 已提交
3133 3134
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
3135
        "paddle.cast",
S
SunAhong1993 已提交
3136 3137
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
3138
        scope_name=scope_name,
S
SunAhong1993 已提交
3139 3140 3141 3142 3143
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
3144 3145
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3146
    # 处理输入2,即%46
S
SunAhong1993 已提交
3147 3148
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3149 3150 3151 3152
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
3153
        scope_name=scope_name,
S
SunAhong1993 已提交
3154 3155 3156 3157 3158
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
3159
        scope_name=scope_name,
S
SunAhong1993 已提交
3160 3161 3162 3163 3164 3165 3166
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
3167 3168
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3169 3170
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
3171 3172
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3173
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
3174 3175
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3176 3177 3178
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
3179 3180
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3181
    if_layer.add_block(block)
S
SunAhong1993 已提交
3182 3183
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3184 3185 3186 3187
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
3188 3189
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3190 3191 3192 3193 3194
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
3195
        "paddle.add",
S
SunAhong1993 已提交
3196 3197
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
3198 3199
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
    return current_inputs, current_outputs


def aten_masked_fill(mapper, graph, node):
    """ 构造填充mask的PaddleLayer。
    TorchScript示例:
        %input.4 : Tensor = aten::masked_fill(%scores.2, %mask.2, %46)
        参数含义:
        %input.4 (Tensor): 输出,填充后的结果。
        %scores.2 (Tensor): 需要填充的Tensor。
        %mask.2 (Tensor): bool型的Tensor,哪些位置需要填充。
        %46 (-): 填充的值。
    """
S
SunAhong1993 已提交
3213
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输入的list
    current_inputs = []
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.4
S
SunAhong1993 已提交
3223 3224
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3225 3226 3227 3228
    current_inputs.append(inputs_name[0])
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
3229 3230
        outputs=[inputs_name[0] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3231
    # 处理输入1,即%scores.2
S
SunAhong1993 已提交
3232 3233
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3234 3235 3236 3237
    current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.logical_not",
        inputs={"x": inputs_name[1]},
S
SunAhong1993 已提交
3238 3239
        outputs=[inputs_name[1] + "_not"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3240
    graph.add_layer(
S
SunAhong1993 已提交
3241
        "paddle.cast",
S
SunAhong1993 已提交
3242 3243
        inputs={"x": inputs_name[1]},
        outputs=[inputs_name[1] + "_mask"],
S
SunAhong1993 已提交
3244
        scope_name=scope_name,
S
SunAhong1993 已提交
3245 3246
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
S
SunAhong1993 已提交
3247
        "paddle.cast",
S
SunAhong1993 已提交
3248 3249
        inputs={"x": inputs_name[1] + "_not"},
        outputs=[inputs_name[1] + "_not_mask"],
S
SunAhong1993 已提交
3250
        scope_name=scope_name,
S
SunAhong1993 已提交
3251 3252 3253 3254 3255
        dtype=inputs_name[0] + "_type")
    graph.add_layer(
        "paddle.multiply",
        inputs={"x": inputs_name[0],
                "y": inputs_name[1] + "_not_mask"},
S
SunAhong1993 已提交
3256 3257
        outputs=[inputs_name[0] + "_not_mask"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3258
    # 处理输入2,即%46
S
SunAhong1993 已提交
3259 3260
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3261 3262 3263 3264
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond1"],
S
SunAhong1993 已提交
3265
        scope_name=scope_name,
S
SunAhong1993 已提交
3266 3267 3268 3269 3270
        y="-float('inf')")
    graph.add_layer(
        "prim.eq",
        inputs={"x": inputs_name[2]},
        outputs=[inputs_name[2] + "_cond2"],
S
SunAhong1993 已提交
3271
        scope_name=scope_name,
S
SunAhong1993 已提交
3272 3273 3274 3275 3276 3277 3278
        y="float('inf')")
    graph.add_layer(
        "prim.or",
        inputs={
            "x": inputs_name[2] + "_cond1",
            "y": inputs_name[2] + "_cond2"
        },
S
SunAhong1993 已提交
3279 3280
        outputs=[inputs_name[2] + "_cond"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3281 3282
    graph.add_layer(
        "prim.if", {'input': inputs_name[2] + "_cond"},
S
SunAhong1993 已提交
3283 3284
        outputs=[inputs_name[2] + "_if"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3285
    if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
3286 3287
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3288 3289 3290
    block.add_layer(
        "prim.equal",
        inputs={"input": inputs_name[1] + "_mask"},
S
SunAhong1993 已提交
3291 3292
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3293
    if_layer.add_block(block)
S
SunAhong1993 已提交
3294 3295
    block = PaddleGraph(
        source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
3296 3297 3298 3299
    block.add_layer(
        "prim.mul",
        inputs={"x": inputs_name[1] + "_mask",
                "y": inputs_name[2]},
S
SunAhong1993 已提交
3300 3301
        outputs=[inputs_name[2] + "_1"],
        scope_name=scope_name)
S
SunAhong1993 已提交
3302 3303 3304 3305 3306
    if_layer.add_block(block)
    if_layer.inputs["input-0"] = inputs_name[1] + "_mask"
    if_layer.inputs["input-1"] = inputs_name[2]
    if_layer.outputs.append(inputs_name[2] + "_1")
    graph.add_layer(
S
SunAhong1993 已提交
3307
        "paddle.add",
S
SunAhong1993 已提交
3308 3309
        inputs={"x": inputs_name[2] + "_1",
                "y": inputs_name[0] + "_not_mask"},
S
SunAhong1993 已提交
3310 3311
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
    return current_inputs, current_outputs


def aten_max(mapper, graph, node):
    """ 构造获取最大值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::max(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3324
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3335
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3336 3337 3338
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3339
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3340 3341 3342 3343
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3344 3345 3346 3347
            "paddle.maximum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
    else:
        pass
    return current_inputs, current_outputs


def aten_max_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。
    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
3366 3367
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pool2d", mapper.nn_name2id)
S
SunAhong1993 已提交
3368
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
3369
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
3370 3371
    layer_inputs = {}
    layer_attrs = {}
S
SunAhong1993 已提交
3372
    layer_attrs_tmp = {}
S
SunAhong1993 已提交
3373 3374 3375 3376
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
3377 3378
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3379 3380 3381 3382
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
S
SunAhong1993 已提交
3383 3384
    layer_attrs["kernel_size"] = mapper.attrs[inputs_name[1]]
    layer_attrs_tmp["pool_size"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3385
    # 处理输入2,即%23
S
SunAhong1993 已提交
3386 3387
    layer_attrs["stride"] = mapper.attrs[inputs_name[2]]
    layer_attrs_tmp["pool_stride"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3388
    # 处理输入3,即%21
S
SunAhong1993 已提交
3389 3390
    layer_attrs["padding"] = mapper.attrs[inputs_name[3]]
    layer_attrs_tmp["pool_padding"] = mapper.attrs[inputs_name[3]]
S
SunAhong1993 已提交
3391 3392 3393 3394
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
C
channingss 已提交
3395
        outputs=[inputs_name[4] + "_assert"],
S
SunAhong1993 已提交
3396
        scope_name=scope_name + "_assert",
S
SunAhong1993 已提交
3397 3398 3399 3400 3401
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3402
    layer_attrs_tmp["ceil_mode"] = mapper.attrs[inputs_name[5]]
S
SunAhong1993 已提交
3403

S
SunAhong1993 已提交
3404 3405 3406 3407 3408 3409
    graph.add_layer(
        "paddle.nn.MaxPool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
    return current_inputs, current_outputs


def aten_matmul(mapper, graph, node):
    """ 构造矩阵相乘的PaddleLayer。
    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
3422
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3423 3424 3425 3426 3427 3428 3429
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%101
S
SunAhong1993 已提交
3430 3431
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3432 3433
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
3434 3435
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3436 3437 3438 3439
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3440 3441 3442 3443 3444
    graph.add_layer(
        "paddle.matmul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
    return current_inputs, current_outputs


def aten_min(mapper, graph, node):
    """ 构造获取最小值的PaddleLayer。
    TorchScript示例:
        %val_if_large0.3 : Tensor = aten::min(%val_if_large.3, %159)
        参数含义:
        %val_if_large0.3 (Tensor): 输出,对比后的结果。
        %val_if_large.3 (Tensor): 输入,需要对比的Tensor1。
        %159 (Tensor): 输入,需要对比的Tensor2。
    """
S
SunAhong1993 已提交
3457
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    input_type = list(node.inputs())[1].type()
    if str(input_type) == "Tensor":
        # 处理输入0,即%val_if_large.3
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3468
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3469 3470 3471
        layer_inputs["x"] = inputs_name[0]
        # 处理输入1,即%159
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3472
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3473 3474 3475 3476
        layer_inputs["y"] = inputs_name[1]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        graph.add_layer(
S
SunAhong1993 已提交
3477 3478 3479 3480
            "paddle.minimum",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
    else:
        pass
    return current_inputs, current_outputs


def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。
    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
S
SunAhong1993 已提交
3497
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3498 3499 3500 3501 3502 3503 3504 3505
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
S
SunAhong1993 已提交
3506 3507
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3508
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
3509 3510 3511
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3512
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3513 3514
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3515 3516
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
3517 3518 3519
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3520
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[2]]
S
SunAhong1993 已提交
3521 3522
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
3523 3524
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[2]
S
SunAhong1993 已提交
3525 3526 3527
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
3528
        "paddle.mean",
S
SunAhong1993 已提交
3529 3530
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3531
        scope_name=scope_name,
S
SunAhong1993 已提交
3532 3533
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551


def aten_meshgrid(mapper, graph, node):
    """ 构造对每个张量做扩充操作的PaddleLayer。
    TorchScript示例:
        %out.39 : int = aten::mshgrid(%input.1)
        参数含义:
        %out.39 (Tensor): 输出,扩充后的结果。
        %input.1 (Tensor): 输入。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.1
S
SunAhong1993 已提交
3552 3553
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3554 3555 3556 3557 3558
    layer_inputs["args"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = layer_inputs.values()
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3559 3560 3561 3562 3563
    graph.add_layer(
        "paddle.meshgrid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3564
    return current_inputs, current_outputs
S
SunAhong1993 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575


def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3576
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3577 3578 3579 3580 3581 3582 3583
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3584 3585
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3586 3587
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3588 3589
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3590 3591 3592 3593 3594
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3595 3596 3597 3598 3599
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
    return current_inputs, current_outputs


def aten_mul_(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。
    TorchScript示例:
        %size_prods.39 : int = aten::mul_(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
S
SunAhong1993 已提交
3612
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3613 3614 3615 3616 3617 3618 3619
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
S
SunAhong1993 已提交
3620 3621
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3622 3623
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
S
SunAhong1993 已提交
3624 3625
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3626 3627 3628 3629 3630
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

S
SunAhong1993 已提交
3631 3632 3633 3634 3635
    graph.add_layer(
        "prim.mul",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。
    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
3648
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3649 3650 3651 3652 3653 3654 3655
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3656 3657
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3658 3659
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
S
SunAhong1993 已提交
3660 3661
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3662 3663 3664 3665
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3666 3667 3668 3669 3670
    graph.add_layer(
        "prim.ne",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。
    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
S
SunAhong1993 已提交
3682
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3683 3684 3685 3686 3687 3688 3689
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3690 3691
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3692 3693 3694 3695
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3696 3697 3698 3699 3700
    graph.add_layer(
        "prim.neg",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3701 3702 3703
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
def aten_norm(mapper, graph, node):
    """ 构造计算范数的PaddleLayer。
    TorchScript示例:
        %25 = aten::norm(%input, %21, %58, %24)
        参数含义:
        %25 (Tensor): 取范数后的结果。
        %input (Tensor): 输入。
        %21 (int): 范数的种类。
        %58 (int): 使用范数计算的轴。
        %24 (bool): 是否在输出的Tensor中保留和输入一样的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
3724 3725
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%21
    if inputs_name[1] in mapper.attrs:
        layer_attrs["p"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["p"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%58
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3,即%24
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keepdim"] = mapper.attrs[inputs_name[3]]
    else:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["keepdim"] = inputs_name[3]
        current_inputs.append(inputs_name[3])

    graph.add_layer(
        "paddle.norm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3762 3763 3764 3765 3766 3767 3768 3769
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
S
SunAhong1993 已提交
3770
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3771 3772 3773 3774 3775 3776 3777
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
S
SunAhong1993 已提交
3778 3779
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3780 3781 3782 3783
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
3784 3785 3786 3787 3788
    graph.add_layer(
        "prim.not",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
    return current_inputs, current_outputs


def aten_ones(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::ones(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
3804
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
3818
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.ones",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3828
        scope_name=scope_name,
S
SunAhong1993 已提交
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
        **layer_attrs)
    return current_inputs, current_outputs


def aten_permute(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。
    TorchScript示例:
        %2385 : Tensor = aten::permute(%cls_confs0.2, %2384)
        参数含义:
        %2385 (Tensor): 重排后的结果。
        %cls_confs0.2 (Tensor): 需要重排的Tensor。
        %2348 (list): 依照此参数进行重排。
    """
S
SunAhong1993 已提交
3842
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3843 3844 3845 3846 3847 3848 3849 3850
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%cls_confs0.2
S
SunAhong1993 已提交
3851 3852
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3853 3854 3855 3856 3857 3858 3859 3860
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2348
    if inputs_name[1] in mapper.attrs:
        layer_attrs["perm"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3861
                            current_outputs, scope_name)
S
SunAhong1993 已提交
3862 3863 3864 3865
        layer_inputs["perm"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
3866
        "paddle.transpose",
S
SunAhong1993 已提交
3867 3868
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3869
        scope_name=scope_name,
S
SunAhong1993 已提交
3870 3871 3872 3873
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
def aten_pixel_shuffle(mapper, graph, node):
    """ 构造以像素的方式重排的PaddleLayer。
    TorchScript示例:
        %x.6 : aten::pixel_shuffle(%input.101, %726)
        参数含义:
        %x.6 (Tensor): 输出,重排后的Tensor。
        %input.101 (Tensor): 需要重排的Tensor。
        %726 (int): 增大空间分辨率的增大因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.101
S
SunAhong1993 已提交
3892 3893
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
    layer_inputs["x"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%726
    layer_attrs["upscale_factor"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.functional.pixel_shuffle",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
3907

S
SunAhong1993 已提交
3908 3909 3910 3911 3912 3913 3914 3915
def aten_pow(mapper, graph, node):
    """ 构造指数激活的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::pow(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,指数激活后的Tensor。
        %4700 (Tensor): 需要指数激活的Tensor。
    """
S
SunAhong1993 已提交
3916
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
3917 3918 3919 3920 3921 3922 3923 3924
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
3925 3926
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
3927 3928 3929 3930 3931
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
S
SunAhong1993 已提交
3932
        layer_attrs["y"] = mapper.attrs[inputs_name[1]]
S
SunAhong1993 已提交
3933 3934
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
3935 3936
                            current_outputs, scope_name)
        layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
3937 3938 3939
        current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
3940
        "paddle.pow",
S
SunAhong1993 已提交
3941 3942
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
3943
        scope_name=scope_name,
S
SunAhong1993 已提交
3944 3945 3946 3947
        **layer_attrs)
    return current_inputs, current_outputs


3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
def aten_prelu(mapper, graph, node):
    """ 构造prelu激活的PaddleLayer。
    TorchScript示例:
        %result.3 : aten::prelu(%input.150, %999)
        参数含义:
        %result.3 (Tensor): 输出,prelu后的结果。
        %input.150 (Tensor): 需要prelu的Tensor。
        %999 (Tnsor): 权重。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.150
S
SunAhong1993 已提交
3966 3967
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
3968 3969 3970 3971 3972 3973 3974 3975
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%999
    weight = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[op_name + "._weight"] = weight
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
3976 3977 3978 3979
        "paddle.nn.PReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
3980 3981 3982 3983
        num_parameters=weight.shape[0])
    return current_inputs, current_outputs


S
add gru  
SunAhong1993 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
def aten_reflection_pad1d(mapper, graph, node):
    """ 构造1维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad1d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad1d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4003 4004
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4020

S
add gru  
SunAhong1993 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
    graph.add_layer(
        "paddle.nn.Pad1D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reflection_pad2d(mapper, graph, node):
    """ 构造2维映射填充的PaddleLayer。
    TorchScript示例:
        %6 = aten::reflection_pad2d(%input, %7)
        参数含义:
        %6 (Tensor): 输出,填充后的Tensor。
        %input (Tensor): 需要填充的Tensor。
        %7 (list|Tensor): 填充大小。
    """
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("pad2d", mapper.nn_name2id)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [op_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input
S
SunAhong1993 已提交
4049 4050
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
add gru  
SunAhong1993 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%7
    if inputs_name[1] in mapper.attrs:
        layer_attrs["padding"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        ipt_node = inputs_node[1]
        while ipt_node.kind() != "prim::GetAttr":
            inputs_name, inputs_node = mapper._get_inputs_name(ipt_node)
            ipt_node = inputs_node[0]
        layer_attrs["padding"] = list(mapper.pytorch_params[inputs_name[0]])
    layer_attrs["mode"] = string("reflect")
S
SunAhong1993 已提交
4066

S
add gru  
SunAhong1993 已提交
4067 4068 4069 4070 4071 4072 4073 4074 4075
    graph.add_layer(
        "paddle.nn.Pad2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4085 4086
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4087
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4088
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4089 4090 4091 4092 4093
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4094 4095
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4096 4097 4098 4099 4100
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4101 4102 4103 4104
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
    return current_inputs, current_outputs


def aten_relu_(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu_(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4117 4118
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu", mapper.nn_name2id)
S
SunAhong1993 已提交
4119
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4120
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4121 4122 4123 4124 4125
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4126 4127
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4128 4129 4130 4131 4132
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4133 4134 4135 4136
        "paddle.nn.ReLU",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148
    return current_inputs, current_outputs


def aten_relu6(mapper, graph, node):
    """ 构造ReLU6激活的PaddleLayer。
    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。
    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
4149 4150
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("relu6", mapper.nn_name2id)
S
SunAhong1993 已提交
4151
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4152
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4153 4154 4155 4156 4157
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
4158 4159
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4160 4161 4162 4163 4164
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4165 4166 4167 4168
        "paddle.nn.ReLU6",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
    return current_inputs, current_outputs


def aten_repeat(mapper, graph, node):
    """ 构造根据参数对输入各维度进行复制的PaddleLayer。
    TorchScript示例:
        701 : Tensor = aten::repeat(%699, %700)
        参数含义:
        %701 (Tensor): 输出,复制后的Tensor。
        %699 (Tensor): 需要复制的Tensor。
        %700 (list): 指定每个维度复制的次数。
    """
S
SunAhong1993 已提交
4181
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4182 4183 4184 4185 4186 4187 4188 4189
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%699
S
SunAhong1993 已提交
4190 4191
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4192 4193 4194 4195 4196 4197 4198 4199
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%700
    if inputs_name[1] in mapper.attrs:
        layer_attrs["repeat_times"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4200
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4201 4202 4203 4204 4205 4206 4207
        layer_inputs["repeat_times"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "paddle.tile",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4208
        scope_name=scope_name,
S
SunAhong1993 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
        **layer_attrs)
    return current_inputs, current_outputs


def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
S
SunAhong1993 已提交
4222
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4223 4224 4225 4226 4227 4228 4229 4230
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
S
SunAhong1993 已提交
4231 4232
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4233 4234 4235 4236 4237 4238 4239 4240
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4241
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4242 4243
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
4244

S
SunAhong1993 已提交
4245
    graph.add_layer(
S
SunAhong1993 已提交
4246
        "paddle.reshape",
S
SunAhong1993 已提交
4247 4248
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4249
        scope_name=scope_name,
S
SunAhong1993 已提交
4250 4251 4252 4253
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
def aten_roll(mapper, graph, node):
    """ 构造循环滚动的PaddleLayer。
    TorchScript示例:
        %x.87 : Float = aten::roll(%x.86, %1862, %1863)
        参数含义:
        %x.87 (Tensor): 输出Tensor。
        %x.86 (Tensor): 输入Tensor。
        %1862 (int/list/tuple): 滚动位移。
        %1863 (int/list/tuple): 滚动轴。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.86
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%1862
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shifts"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["shifts"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%1863
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "paddle.roll",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
def aten_rsub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer,计算公式为:out = y - alpha * x。
    TorchScript示例:
        %31 : Tensor = aten::rsub(%30, %13, %7)
        参数含义:
        %31 (Tensor): 相减结果。
        %30 (Tensor): 输入Tensor x。
        %13 (int/float): 输入数值 y。
        %7 (int/float): alpha。
    """
S
SunAhong1993 已提交
4314
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4315 4316 4317 4318 4319 4320 4321 4322
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%30
S
SunAhong1993 已提交
4323 4324
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4325 4326
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%13
S
SunAhong1993 已提交
4327 4328
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4329 4330
    layer_inputs["y"] = inputs_name[1]
    # 处理输入2,即%7
S
SunAhong1993 已提交
4331 4332
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4333 4334 4335 4336
    layer_inputs["alpha"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4337 4338 4339 4340 4341
    graph.add_layer(
        "prim.rsub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
    return current_inputs, current_outputs


def aten_ScalarImplicit(mapper, graph, node):
    """ 构造获取scalar的PaddleLayer。
    TorchScript示例:
        %89 : Scalar = aten::ScalarImplicit(%end.1)
        参数含义:
        %89 (Scalar): 输出,得到的Scalar。
        %end.1 (-): 组要转换的数据。
    【注意】由于Paddle无Scalar,所以最后转换为Tensor。
    """
S
SunAhong1993 已提交
4354
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4355 4356 4357 4358 4359 4360 4361 4362
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%end.1
S
SunAhong1993 已提交
4363 4364
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4365 4366 4367 4368 4369 4370
    layer_inputs["input"] = inputs_name[0]
    input_type = list(node.inputs())[0].type()
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if str(input_type) == "Tensor":
        graph.add_layer(
S
SunAhong1993 已提交
4371 4372 4373 4374
            "prim.equal",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
    else:
        raise Exception(
            "The input type {} of aten::ScalarImplicit is not implemented yet!"
        ).format(input_type)
    return current_inputs, current_outputs


def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。
    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
S
SunAhong1993 已提交
4392
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4393 4394 4395 4396 4397 4398 4399 4400
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
S
SunAhong1993 已提交
4401 4402
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4403 4404 4405 4406
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
S
SunAhong1993 已提交
4407 4408
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4409 4410 4411 4412 4413 4414 4415 4416
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
        outputs=current_outputs,
S
SunAhong1993 已提交
4417
        scope_name=scope_name,
S
SunAhong1993 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
        **layer_attrs)
    return current_inputs, current_outputs


def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。
    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
S
SunAhong1993 已提交
4431
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4432 4433 4434 4435 4436
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
S
SunAhong1993 已提交
4437 4438
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4439 4440
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
S
SunAhong1993 已提交
4441 4442
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4443 4444
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
S
SunAhong1993 已提交
4445 4446
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4447 4448 4449 4450
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4451 4452
    graph.add_layer(
        "prim.set_item", inputs=layer_inputs, outputs=[], scope_name=scope_name)
S
SunAhong1993 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
    return current_inputs, current_outputs


def aten_sigmoid(mapper, graph, node):
    """ 构造sigmoid激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::sigmoid(%54)
        参数含义:
        %55 (Tensor): 输出,sigmoid后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
4464 4465
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("sigmoid", mapper.nn_name2id)
S
SunAhong1993 已提交
4466
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4467
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4468 4469 4470 4471 4472
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%54
S
SunAhong1993 已提交
4473 4474
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4475 4476 4477 4478 4479
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4480 4481 4482 4483
        "paddle.nn.Sigmoid",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
    return current_inputs, current_outputs


def aten_sin(mapper, graph, node):
    """ 构造数学计算sin的PaddleLayer。
    TorchScript示例:
        %94 : Tensor = aten::sin(%sinusoid_inp.1)
        参数含义:
        %94 (Tensor): 输出,sin之后的结果。
        %sinusoid_inp.1 (Tensor): 需要进行shape的Tensor。
    """
S
SunAhong1993 已提交
4495
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4496 4497 4498 4499 4500 4501 4502
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%sinusoid_inp.1
S
SunAhong1993 已提交
4503 4504
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4505 4506 4507 4508
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4509 4510 4511 4512 4513
    graph.add_layer(
        "paddle.sin",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
    return current_inputs, current_outputs


def aten_size(mapper, graph, node):
    """ 构造获取shape的PaddleLayer。
    TorchScript示例:
        %73 : int[] = aten::size(%x.12, %10)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
        %10 (int): 非必须,代表维度。
    """
S
SunAhong1993 已提交
4526
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4527 4528 4529 4530 4531 4532 4533 4534
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
4535 4536
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    if len(inputs_name) > 1:
        # 处理输入1,即%12
        if inputs_name[1] in mapper.attrs:
            layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4546
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4547 4548 4549 4550 4551 4552
            layer_inputs["dim"] = inputs_name[1]
            current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.shape_dim",
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
4553
            scope_name=scope_name,
S
SunAhong1993 已提交
4554 4555 4556 4557
            **layer_attrs)
        return current_inputs, current_outputs

    graph.add_layer(
S
SunAhong1993 已提交
4558 4559 4560 4561
        "prim.shape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
    return current_inputs, current_outputs


def aten_slice(mapper, graph, node):
    """ 构造切分list或Variable的PaddleLayer。
    TorchScript示例:
        %83 : int[] = aten::slice(%73, %_81, %82, %75, %77)
        参数含义:
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
        %_81 (int): 切分的维度,不一定存在。
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
4577
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    if len(inputs_name) == 5:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4587 4588
                            current_outputs, scope_name)
        layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
4589 4590 4591 4592 4593 4594 4595 4596 4597

        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())
        # 处理输入1,即%_81
        if inputs_name[1] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[1] + "_list"],
S
SunAhong1993 已提交
4598
                scope_name=scope_name,
S
SunAhong1993 已提交
4599 4600 4601
                input0=mapper.attrs[inputs_name[1]])
        else:
            mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4602
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4603 4604 4605
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[1]},
S
SunAhong1993 已提交
4606 4607
                outputs=[inputs_name[1] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
            current_inputs.append(inputs_name[1])
        layer_inputs["axes"] = inputs_name[1] + "_list"
        current_inputs.append(inputs_name[1] + "_list")
        current_outputs.append(inputs_name[1] + "_list")
        # 处理输入2,即%82
        if inputs_name[2] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[2] + "_list"],
S
SunAhong1993 已提交
4618
                scope_name=scope_name,
S
SunAhong1993 已提交
4619 4620 4621
                input0=mapper.attrs[inputs_name[2]])
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
4622
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4623 4624 4625
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[2]},
S
SunAhong1993 已提交
4626 4627
                outputs=[inputs_name[2] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
            current_inputs.append(inputs_name[2])
        layer_inputs["starts"] = inputs_name[2] + "_list"
        current_inputs.append(inputs_name[2] + "_list")
        current_outputs.append(inputs_name[2] + "_list")
        # 处理输入3,即%85
        if inputs_name[3] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[3] + "_list"],
S
SunAhong1993 已提交
4638
                scope_name=scope_name,
S
SunAhong1993 已提交
4639 4640 4641
                input0=mapper.attrs[inputs_name[3]])
        else:
            mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
4642
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4643 4644 4645
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[3]},
S
SunAhong1993 已提交
4646 4647
                outputs=[inputs_name[3] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
            current_inputs.append(inputs_name[3])
        layer_inputs["ends"] = inputs_name[3] + "_list"
        current_inputs.append(inputs_name[3] + "_list")
        current_outputs.append(inputs_name[3] + "_list")
        # 处理输入4,即%77
        if inputs_name[4] in mapper.attrs:
            graph.add_layer(
                "prim.list",
                inputs={},
                outputs=[inputs_name[4] + "_list"],
S
SunAhong1993 已提交
4658
                scope_name=scope_name,
S
SunAhong1993 已提交
4659 4660 4661
                input0=mapper.attrs[inputs_name[4]])
        else:
            mapper._check_input(graph, inputs_node[4], inputs_name[4],
S
SunAhong1993 已提交
4662
                                current_outputs, scope_name)
S
SunAhong1993 已提交
4663 4664 4665
            graph.add_layer(
                "prim.list",
                inputs={"input0": inputs_name[4]},
S
SunAhong1993 已提交
4666 4667
                outputs=[inputs_name[4] + "_list"],
                scope_name=scope_name)
S
SunAhong1993 已提交
4668 4669 4670 4671 4672 4673
            current_inputs.append(inputs_name[4])
        layer_inputs["strides"] = inputs_name[4] + "_list"
        current_inputs.append(inputs_name[4] + "_list")
        current_outputs.append(inputs_name[4] + "_list")

        graph.add_layer(
S
SunAhong1993 已提交
4674
            "paddle.strided_slice",
S
SunAhong1993 已提交
4675
            inputs=layer_inputs,
S
SunAhong1993 已提交
4676 4677
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4678 4679 4680
    else:
        # 处理输入0,即%73
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
4681
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4682 4683 4684
        layer_inputs["input"] = inputs_name[0]
        # 处理输入1,即%82
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4685
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4686 4687 4688
        layer_inputs["start"] = inputs_name[1]
        # 处理输入2,即%75
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
4689
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4690 4691 4692
        layer_inputs["end"] = inputs_name[2]
        # 处理输入3,即%77
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
S
SunAhong1993 已提交
4693
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4694 4695 4696 4697 4698
        layer_inputs["step"] = inputs_name[3]
        # 获取当前节点输入的list
        current_inputs = list(layer_inputs.values())

        graph.add_layer(
S
SunAhong1993 已提交
4699 4700 4701 4702
            "prim.slice",
            inputs=layer_inputs,
            outputs=layer_outputs,
            scope_name=scope_name)
S
SunAhong1993 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
    return current_inputs, current_outputs


def aten_softmax(mapper, graph, node):
    """ 构造softmax激活的PaddleLayer。
    TorchScript示例:
        %input2.1 : Tensor = aten::softmax(%input.5, %80, %72)
        参数含义:
        %input2.1 (Tensor): 激活后结果。
        %input.5 (Tensor): 需要激活的Tensor。
        %80 (int): 指定对输入Tensor进行运算的轴。
        %72 (str): 类型,默认为None。
    """
S
SunAhong1993 已提交
4716 4717
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softmax", mapper.nn_name2id)
S
SunAhong1993 已提交
4718
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4719
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4720 4721 4722 4723 4724 4725
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
4726 4727
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["axis"] = mapper.attrs[inputs_name[1]]

    graph.add_layer(
        "paddle.nn.Softmax",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4737
        scope_name=scope_name,
S
SunAhong1993 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
        **layer_attrs)
    return current_inputs, current_outputs


def aten_softplus(mapper, graph, node):
    """ 构造softplus激活的PaddleLayer。
    TorchScript示例:
        %54 : Tensor = aten::softplus(%x.31, %30, %29)
        参数含义:
        %54 (Tensor): 激活后结果。
        %x.31 (Tensor): 需要激活的Tensor。
        %30 (int): beta。
        %29 (int): 阈值。
    """
S
SunAhong1993 已提交
4752 4753
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("softplus", mapper.nn_name2id)
S
SunAhong1993 已提交
4754
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
4755
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
4756 4757 4758 4759 4760 4761
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.31
S
SunAhong1993 已提交
4762 4763
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    layer_attrs["beta"] = mapper.attrs[inputs_name[1]]
    layer_attrs["threshold"] = mapper.attrs[inputs_name[2]]

    graph.add_layer(
        "paddle.nn.Softplus",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4774
        scope_name=scope_name,
S
SunAhong1993 已提交
4775 4776 4777 4778
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797
def aten_split_with_sizes(mapper, graph, node):
    """ 构构造split的PaddleLayer。
    TorchScript示例:
        %1450 : Tensor[] = aten::split_with_sizes(%1446, %1750, %41)
        参数含义:
        %1450 (Tensor): 输出,split后的Tensor。
        %1446 (Tensor): 需要获取split的Tensor。
        %1750 (list): 子Tensor的数量列表。
        %41 (int): 需要分割的维度。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%1446
S
SunAhong1993 已提交
4798 4799
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%1750
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%135
    if inputs_name[2] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs, scope_name)
        layer_inputs["axis"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "paddle.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4829 4830 4831 4832 4833 4834 4835 4836
def aten_sqrt(mapper, graph, node):
    """ 构构造sqrt的PaddleLayer。
    TorchScript示例:
        %787 : Tensor = aten::sqrt(%786)
        参数含义:
        %787 (Tensor): 输出,取sqrt的Tensor。
        %786 (Tensor): 需要获取sqrt的Tensor。
    """
S
SunAhong1993 已提交
4837
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4838 4839 4840 4841 4842 4843 4844
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%786
S
SunAhong1993 已提交
4845 4846
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4847 4848 4849 4850 4851
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
4852 4853 4854 4855
        "paddle.sqrt",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
    return current_inputs, current_outputs


def aten_squeeze(mapper, graph, node):
    """ 构造删除位数为1的维度的PaddleLayer。
    TorchScript示例:
        %12 : Tensor = aten::squeeze(%start_logits.1, %4)
        参数含义:
        %12 (Tensor): 输出,删除维度后的Tensor。
        %start_logits.1 (Tensor): 需要删除维度的Tensor。
        %4 (int): 维度。
    """
S
SunAhong1993 已提交
4868
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4869 4870 4871 4872 4873 4874 4875 4876
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%start_logits.1
S
SunAhong1993 已提交
4877 4878
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4879 4880 4881 4882 4883 4884 4885 4886
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4887
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4888 4889 4890
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
4891
        "paddle.squeeze",
S
SunAhong1993 已提交
4892 4893
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4894
        scope_name=scope_name,
S
SunAhong1993 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
        **layer_attrs)
    return current_inputs, current_outputs


def aten_stack(mapper, graph, node):
    """ 构造堆叠Tensor的PaddleLayer。
    TorchScript示例:
        %x.222 : Tensor = aten::stack(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,堆叠后的结果。
        %i.12 (Tensor): 需要堆叠的Tensor组成的Tensor。
        %7 (int): 堆叠的轴。
    """
S
SunAhong1993 已提交
4908
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4909 4910 4911 4912 4913 4914 4915 4916
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
4917 4918
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4919 4920 4921 4922 4923 4924 4925 4926
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
4927
                            current_outputs, scope_name)
S
SunAhong1993 已提交
4928 4929 4930 4931 4932 4933
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "paddle.stack",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
4934
        scope_name=scope_name,
S
SunAhong1993 已提交
4935 4936 4937 4938 4939 4940 4941
        **layer_attrs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
S
SunAhong1993 已提交
4942
        %840 : int = aten::sub(%839, %836, %3)
S
SunAhong1993 已提交
4943 4944 4945 4946
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
S
SunAhong1993 已提交
4947
        %3 (-): alpha。
S
SunAhong1993 已提交
4948
    """
S
SunAhong1993 已提交
4949
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
4950 4951 4952
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
S
SunAhong1993 已提交
4953
    layer_attrs = {}
S
SunAhong1993 已提交
4954 4955 4956 4957
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
S
SunAhong1993 已提交
4958 4959
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
4960 4961 4962
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
    mapper._check_input(
S
SunAhong1993 已提交
4963 4964 4965 4966 4967 4968
        graph,
        inputs_node[1],
        inputs_name[1],
        current_outputs,
        scope_name,
        add_dim=True)
S
SunAhong1993 已提交
4969
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
    # 处理输入2,即%3
    if len(inputs_node) > 2:
        if inputs_name[2] in mapper.attrs:
            layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
        else:
            mapper._check_input(graph, inputs_node[2], inputs_name[2],
                                current_outputs, scope_name)
            layer_inputs["alpha"] = inputs_name[2]
            current_inputs.append(inputs_name[2])
    else:
        layer_attrs["alpha"] = 1.0
S
SunAhong1993 已提交
4981 4982 4983
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
4984 4985 4986 4987 4988 4989
    graph.add_layer(
        "prim.sub",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
S
SunAhong1993 已提交
4990 4991 4992
    return current_inputs, current_outputs


S
SunAhong1993 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
def aten_sub_(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub_(%839, %836, %3)
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
        %3 (-): alpha。
    """
    return aten_sub(mapper, graph, node)

S
SunAhong1993 已提交
5005

S
SunAhong1993 已提交
5006 5007 5008 5009 5010 5011 5012 5013
def aten_t(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
5014
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5015 5016 5017 5018 5019 5020 5021
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
5022 5023
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5024 5025 5026 5027 5028
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5029
        "paddle.transpose",
S
SunAhong1993 已提交
5030 5031
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5032
        scope_name=scope_name,
S
SunAhong1993 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
        perm=[1, 0])
    return current_inputs, current_outputs


def aten_tanh(mapper, graph, node):
    """ 构造tanh激活的PaddleLayer。
    TorchScript示例:
        %55 : Tensor = aten::tanh(%54)
        参数含义:
        %55 (Tensor): 输出,tanh后的结果。
        %54 (Tensor): 需要tanh的Tensor。
    """
S
SunAhong1993 已提交
5045 5046
    scope_name = mapper.normalize_scope_name(node)
    op_name = name_generator("tanh", mapper.nn_name2id)
S
SunAhong1993 已提交
5047
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
5048
    layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
5049 5050 5051 5052 5053
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
5054 5055
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5056 5057 5058 5059 5060
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5061 5062 5063 5064
        "paddle.nn.Tanh",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
    return current_inputs, current_outputs


def aten_split(mapper, graph, node):
    """ 构造分割Tensor的PaddleLayer。
    TorchScript示例:
        %160 : Tensor[] = aten::split(%159, %135, %123)
        参数含义:
        %160 (Tensor): 输出,分割后的矩阵。
        %159 (Tensor): 需要分割的Tensor。
        %135 (int): 分割的数量。
        %723 (int): 轴。
    """
S
SunAhong1993 已提交
5078
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5079 5080 5081 5082 5083 5084 5085 5086
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%159
S
SunAhong1993 已提交
5087 5088
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5089
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
5090
    # 处理输入2,即%723
S
SunAhong1993 已提交
5091 5092
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5093
    layer_inputs["axis"] = inputs_name[2]
S
SunAhong1993 已提交
5094
    # 处理输入1,即%135
S
SunAhong1993 已提交
5095 5096
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105
    input_type = list(node.inputs())[0].type()
    if "[]" in str(input_type):
        layer_inputs["num_or_sections"] = inputs_name[1]
    else:
        layer_attrs["num_or_sections"] = 1
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
S
SunAhong1993 已提交
5106
        "paddle.split",
S
SunAhong1993 已提交
5107 5108
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5109
        scope_name=scope_name,
S
SunAhong1993 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123
        **layer_attrs)
    return current_inputs, current_outputs


def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。
    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
S
SunAhong1993 已提交
5124
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5125 5126 5127 5128 5129 5130 5131 5132
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
S
SunAhong1993 已提交
5133 5134
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5135 5136
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
S
SunAhong1993 已提交
5137 5138
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5139 5140
    dim1 = inputs_name[1]
    # 处理输入2,即%705
S
SunAhong1993 已提交
5141 5142
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5143 5144
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
5145
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
5146
    graph.add_layer(
S
SunAhong1993 已提交
5147
        "prim.shape",
S
SunAhong1993 已提交
5148
        inputs={"input": inputs_name[0]},
S
SunAhong1993 已提交
5149 5150
        outputs=[output_name + "_shape"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5151 5152 5153 5154
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
S
SunAhong1993 已提交
5155 5156
        outputs=[output_name + "_len"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5157 5158 5159 5160 5161
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
S
SunAhong1993 已提交
5162 5163
        outputs=[output_name + "_list"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5164 5165 5166 5167 5168 5169
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim1},
S
SunAhong1993 已提交
5170 5171
        outputs=[dim1 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5172 5173 5174 5175
    graph.add_layer(
        "prim.check_dim",
        inputs={"len": output_name + "_len",
                "dim": dim2},
S
SunAhong1993 已提交
5176 5177
        outputs=[dim2 + "_new"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5178 5179 5180 5181 5182 5183 5184
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim1 + "_new",
            "item": dim2 + "_new"
        },
S
SunAhong1993 已提交
5185 5186
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5187 5188 5189 5190 5191 5192 5193
    graph.add_layer(
        "prim.replaceitem",
        inputs={
            "list": output_name + "_list",
            "index": dim2 + "_new",
            "item": dim1 + "_new"
        },
S
SunAhong1993 已提交
5194 5195
        outputs=[],
        scope_name=scope_name)
S
SunAhong1993 已提交
5196
    graph.add_layer(
S
SunAhong1993 已提交
5197
        "paddle.transpose",
S
SunAhong1993 已提交
5198 5199
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5200
        scope_name=scope_name,
S
SunAhong1993 已提交
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213
        perm=output_name + "_list")
    return current_inputs, current_outputs


def aten_to(mapper, graph, node):
    """ 构造类型转换的PaddleLayer。
    TorchScript示例:
        %30 : Tensor = aten::to(%extended_attention_mask.1, %12, %5, %5, %4)
        参数含义:
        %30 (Tensor): 转换后的Tensor。
        %extended_attention_mask.1 (Tensor): 需要转换的Tensor。
        %12 (int): 转换的类型。
    """
S
SunAhong1993 已提交
5214
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5215 5216 5217 5218 5219 5220 5221 5222
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5223 5224
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if len(inputs_name) == 6:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[2]]]
    else:
        layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
S
SunAhong1993 已提交
5235
        "paddle.cast",
S
SunAhong1993 已提交
5236 5237
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5238
        scope_name=scope_name,
S
SunAhong1993 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251
        **layer_attrs)
    return current_inputs, current_outputs


def aten_type_as(mapper, graph, node):
    """ 构造转换Tensor类型的PaddleLayer。
    TorchScript示例:
        %57 : Tensor = aten::type_as(%56, %mask.1)
        参数含义:
        %57 (Tensor): 输出,改变类型后的Tensor。
        %56 (Tensor): 需要改变类型的Tensor。
        %mask.1 (Tensor): 转换成与该Tensor相一致的类型。
    """
S
SunAhong1993 已提交
5252
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5253 5254 5255 5256 5257 5258 5259
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%56
S
SunAhong1993 已提交
5260 5261
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5262 5263 5264 5265
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入0,即%mask.1
S
SunAhong1993 已提交
5266 5267
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5268 5269 5270
    graph.add_layer(
        "prim.type",
        inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5271 5272
        outputs=[inputs_name[1] + "_type"],
        scope_name=scope_name)
S
SunAhong1993 已提交
5273 5274 5275 5276
    layer_inputs["dtype"] = inputs_name[1] + "_type"
    current_inputs.append(inputs_name[1])

    graph.add_layer(
S
SunAhong1993 已提交
5277 5278 5279 5280
        "paddle.cast",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
    return current_inputs, current_outputs


def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。
    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
S
SunAhong1993 已提交
5293
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5294 5295 5296 5297 5298 5299 5300 5301
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
S
SunAhong1993 已提交
5302 5303
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5304 5305 5306 5307 5308 5309 5310 5311
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5312
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5313 5314 5315
        layer_inputs["axis"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5316
        "paddle.unsqueeze",
S
SunAhong1993 已提交
5317 5318
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5319
        scope_name=scope_name,
S
SunAhong1993 已提交
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
        **layer_attrs)
    return current_inputs, current_outputs


def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
S
SunAhong1993 已提交
5336
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5337 5338 5339 5340 5341 5342 5343 5344
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5345 5346
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5347 5348 5349 5350 5351 5352 5353 5354
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5355
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5356 5357 5358 5359 5360 5361
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
S
SunAhong1993 已提交
5362
            scope_name=scope_name,
S
SunAhong1993 已提交
5363
            cls="paddle.fluid.Variable")
S
SunAhong1993 已提交
5364
        # TODO(syf): paddle.Variable
S
SunAhong1993 已提交
5365 5366
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
S
SunAhong1993 已提交
5367 5368
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
S
SunAhong1993 已提交
5369
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
5370 5371
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5372 5373 5374
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
S
SunAhong1993 已提交
5375 5376
            outputs=[inputs_name[1]],
            scope_name=scope_name)
S
SunAhong1993 已提交
5377
        if_layer.add_block(block)
S
SunAhong1993 已提交
5378 5379
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5380 5381 5382 5383 5384 5385 5386
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
S
SunAhong1993 已提交
5387
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5388 5389
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
S
fix2  
SunAhong1993 已提交
5390 5391 5392 5393
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
5394
    layer_attrs["align_mode"] = 0
C
channingss 已提交
5395
    layer_attrs["mode"] = string("bilinear")
S
SunAhong1993 已提交
5396 5397 5398 5399
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5400
        scope_name=scope_name,
S
SunAhong1993 已提交
5401 5402 5403
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
5404

S
SunAhong1993 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424
def aten_upsample_nearest2d(mapper, graph, node):
    """ 构造使用nearest上采样的PaddleLayer。
    TorchScript示例:
        %4997 : Tensor = aten::upsample_nearest2d(%x.13, %4963, %5421, %4995)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
S
SunAhong1993 已提交
5425 5426
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["size"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs, scope_name)
        layer_inputs["size"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
        graph.add_layer(
            "prim.isinstance",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1] + "_isinstance"],
            scope_name=scope_name,
            cls="paddle.fluid.Variable")
        # TODO(syf): paddle.Variable
        graph.add_layer(
            "prim.if", {"input": inputs_name[1] + "_isinstance"},
            outputs=[inputs_name[0] + "_if1"],
            scope_name=scope_name)
        if_layer = graph.layers[list(graph.layers.keys())[-1]]
S
SunAhong1993 已提交
5450 5451
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5452 5453 5454 5455 5456 5457
        block.add_layer(
            "prim.var2list",
            inputs={"input": inputs_name[1]},
            outputs=[inputs_name[1]],
            scope_name=scope_name)
        if_layer.add_block(block)
S
SunAhong1993 已提交
5458 5459
        block = PaddleGraph(
            source_type="pytorch", parent_layer=if_layer, graph_type="dygraph")
S
SunAhong1993 已提交
5460 5461
        if_layer.add_block(block)
        if_layer.inputs["input-0"] = inputs_name[1]
S
fix  
SunAhong1993 已提交
5462 5463 5464 5465
    if "size" in layer_attrs and layer_attrs["size"] is None:
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs, scope_name)
        layer_inputs["scale_factor"] = inputs_name[3]
S
SunAhong1993 已提交
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
    layer_attrs["align_mode"] = 0
    layer_attrs["mode"] = string("nearest")
    graph.add_layer(
        "paddle.nn.functional.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name,
        **layer_attrs)
    return current_inputs, current_outputs

S
SunAhong1993 已提交
5476

S
SunAhong1993 已提交
5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
def aten_values(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。
    TorchScript示例:
        %5 : Float(1, *, 1024, 2048)[] = aten::values(%1)
        参数含义:
        %5 (list): 输出,由字典获取的values的list。
        %1 (dict): 字典。
    """
    scope_name = mapper.normalize_scope_name(node)
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
S
SunAhong1993 已提交
5493 5494
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5495 5496 5497 5498
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5499 5500 5501 5502 5503
    graph.add_layer(
        "prim.dict2values",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5504 5505 5506
    return current_inputs, current_outputs


S
SunAhong1993 已提交
5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。
    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。
    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
S
SunAhong1993 已提交
5521
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5522 5523 5524 5525 5526 5527 5528 5529
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
S
SunAhong1993 已提交
5530 5531
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5532 5533 5534 5535 5536 5537 5538 5539
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5540
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5541 5542 5543
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    graph.add_layer(
S
SunAhong1993 已提交
5544
        "paddle.reshape",
S
SunAhong1993 已提交
5545 5546
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5547
        scope_name=scope_name,
S
SunAhong1993 已提交
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
        **layer_attrs)
    return current_inputs, current_outputs


def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。
    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
S
SunAhong1993 已提交
5560
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5561 5562 5563 5564 5565 5566 5567 5568
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
S
SunAhong1993 已提交
5569 5570
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5571 5572 5573 5574 5575 5576 5577 5578
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
S
SunAhong1993 已提交
5579
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5580 5581 5582 5583 5584 5585 5586
        layer_inputs["stacklevel"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5587
        scope_name=scope_name,
S
SunAhong1993 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601
        **layer_attrs)
    return current_inputs, current_outputs


def aten_where(mapper, graph, node):
    """ 构造返回一个根据输入condition, 选择x或y的元素组成的多维Tensor的PaddleLayer,该节点实现out = x + y。
    TorchScript示例:
        %input.4 : Tensor = aten::where(%209, %w0.2, %210)
        参数含义:
        %input.4 (Tensor): 选择的结果。
        %209 (Tensor): 条件。
        %w0.2 (Tensor): 输入数值 x。
        %210 (Tensor): 输入数值 y。
    """
S
SunAhong1993 已提交
5602
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5603 5604 5605 5606 5607 5608 5609
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%209
S
SunAhong1993 已提交
5610 5611
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5612 5613
    layer_inputs["condition"] = inputs_name[0]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
5614 5615
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5616 5617
    layer_inputs["x"] = inputs_name[1]
    # 处理输入1,即%w0.2
S
SunAhong1993 已提交
5618 5619
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5620 5621 5622 5623
    layer_inputs["y"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
5624 5625 5626 5627 5628
    graph.add_layer(
        "paddle.where",
        inputs=layer_inputs,
        outputs=layer_outputs,
        scope_name=scope_name)
S
SunAhong1993 已提交
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
    return current_inputs, current_outputs


def aten_zeros(mapper, graph, node):
    """ 构造创建固定形状、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %input.49 : Tensor = aten::zeros(%23, %8, %6, %24, %5)
        参数含义:
        %input.49 (Tensor): 输出,全0的Tensor。
        %23 (list): 形状。
        %8 (int): 类型dtype。
        %6 (int): layout。
        %4995 (Device): 设备。
        %4995 (bool): 是否计算梯度。
    """
S
SunAhong1993 已提交
5644
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    current_inputs = []
    # 处理输入0,即%23,代表end
    if inputs_name[0] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[0]]
    else:
        mapper._check_input(graph, inputs_node[0], inputs_name[0],
S
SunAhong1993 已提交
5658
                            current_outputs, scope_name)
S
SunAhong1993 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667
        layer_inputs["shape"] = inputs_name[0]
        current_inputs.append(inputs_name[0])
    # 处理输入1,即%8,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5668
        scope_name=scope_name,
S
SunAhong1993 已提交
5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
        **layer_attrs)
    return current_inputs, current_outputs


def aten_zeros_like(mapper, graph, node):
    """ 构造创建与输入Tensor形状一致的、数据类型且值全为0的Tensor的PaddleLayer。
    TorchScript示例:
        %782 : Tensor = aten::zeros_like(%n.2, %655, %670, %662, %671, %672)
        参数含义:
        %782 (Tensor): 输出,全0的Tensor。
        %n.2 (Tensor): 标准Tensor。
        %655 (int): 类型dtype。
        %670 (int): layout。
        %662 (Device): 设备。
        %671 (bool): 是否计算梯度。
        %672 (memory_format): 存储类型。
    """
S
SunAhong1993 已提交
5686
    scope_name = mapper.normalize_scope_name(node)
S
SunAhong1993 已提交
5687 5688 5689 5690 5691 5692 5693 5694
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%n.2
S
SunAhong1993 已提交
5695 5696
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs,
                        scope_name)
S
SunAhong1993 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%655,代表dtype
    layer_attrs["dtype"] = dtype_dict[mapper.attrs[inputs_name[1]]]

    graph.add_layer(
        "paddle.zeros_like",
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
5707
        scope_name=scope_name,
S
SunAhong1993 已提交
5708 5709
        **layer_attrs)
    return current_inputs, current_outputs