program.py 8.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division
J
jiangjiajun 已提交
17 18
import paddle.fluid as fluid
from paddle.fluid.proto import framework_pb2
J
jiangjiajun 已提交
19
from collections import OrderedDict
J
jiangjiajun 已提交
20
import numpy
J
jiangjiajun 已提交
21
import time
J
jiangjiajun 已提交
22
import collections
J
jiangjiajun 已提交
23
import sys
J
jiangjiajun 已提交
24
import os
J
jiangjiajun 已提交
25
import six
J
jiangjiajun 已提交
26 27 28 29 30 31 32 33 34


class PaddleLayer(object):
    def __init__(self, kernel, inputs, outputs, **kwargs):
        assert isinstance(
            inputs,
            dict), "parameter 'inputs' for PaddleLayer should be type of dict"
        assert isinstance(
            outputs,
J
jiangjiajun 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
            list), "parameter 'outputs' for PaddleLayer should be type of list"
        for k, v in inputs.items():
            if isinstance(v, list):
                for i in v:
                    assert isinstance(
                        i, six.string_types
                    ), "value in inputs should be type of string or list of string"
            else:
                assert isinstance(v, six.string_types) or isinstance(
                    v, list
                ), "value in inputs should be type of string or list of string"
        for v in outputs:
            assert isinstance(
                v, six.
                string_types), "elements in outputs should be type of string"
J
jiangjiajun 已提交
50 51 52 53
        self.kernel = kernel
        self.inputs = inputs
        self.outputs = outputs
        self.attrs = kwargs
J
jiangjiajun 已提交
54 55 56 57 58
        self.id = str(time.time())

    def add_block(self, block):
        block.father_unique_id = self.unique_id
        self.blocks.append(block)
J
jiangjiajun 已提交
59 60 61 62


class PaddleProgram(object):
    def __init__(self):
J
jiangjiajun 已提交
63
        self.layers = OrderedDict()
J
jiangjiajun 已提交
64 65 66 67 68
        self.edges_out = dict()
        self.edges_in = dict()
        self.inputs = list()
        self.outputs = list()
        self.parameters = dict()
J
jiangjiajun 已提交
69
        self.father_layer_id = None
J
jiangjiajun 已提交
70

J
jiangjiajun 已提交
71
    def clear(self):
J
jiangjiajun 已提交
72
        self.layers = OrderedDict()
J
jiangjiajun 已提交
73 74 75 76 77 78
        self.edges_out = dict()
        self.edges_in = dict()
        self.inputs = list()
        self.outputs = list()
        self.parameters = dict()

J
jiangjiajun 已提交
79 80
    def add_layer(self, kernel, inputs, outputs, **kwargs):
        layer = PaddleLayer(kernel, inputs, outputs, **kwargs)
J
jiangjiajun 已提交
81 82 83 84 85
        layer_id = str(len(self.layers))
        if self.father_layer_id is not None:
            layer_id = "{}.{}".format(layer_id, self.father_layer_id)
        self.layers[layer_id] = layer
        return layer_id
J
jiangjiajun 已提交
86 87

    def build(self):
J
jiangjiajun 已提交
88
        outputs_from_nodes = dict()
J
jiangjiajun 已提交
89
        for layer_id, layer in self.layers.items():
J
jiangjiajun 已提交
90 91 92 93 94 95 96
            for input_key, input_var in layer.inputs.items():
                vs = input_var
                if not isinstance(vs, list):
                    vs = [vs]
                for v in vs:
                    assert v in outputs_from_nodes, "Couldn't find {} in previous layers, the layers should be make by topological sort".format(
                        v)
J
jiangjiajun 已提交
97 98 99 100 101 102 103 104
                    in_layer_id = outputs_from_nodes[v]
                    if in_layer_id not in self.edges_out:
                        self.edges_out[in_layer_id] = list()
                    self.edges_out[in_layer_id].append(layer_id)

                    if layer_id not in self.edges_in:
                        self.edges_in[layer_id] = list()
                    self.edges_in[layer_id].append(in_layer_id)
J
jiangjiajun 已提交
105
            for output in layer.outputs:
J
jiangjiajun 已提交
106
                outputs_from_nodes[output] = layer_id
J
jiangjiajun 已提交
107 108 109 110 111 112 113 114 115 116

    def gen_code(self, code_dir):
        def write_code(f, code_list, indent=0):
            indent_blank = "    " * indent
            for code_line in code_list:
                if code_line.strip() == "":
                    f.write('\n')
                else:
                    f.write(indent_blank + code_line + '\n')

J
jiangjiajun 已提交
117 118 119
        if not os.path.exists(code_dir):
            os.makedirs(code_dir)
        f = open(os.path.join(code_dir, 'x2paddle_model.py'), 'w')
J
jiangjiajun 已提交
120 121 122 123 124 125 126 127 128

        write_code(
            f, [
                "from paddle.fluid.initializer import Constant",
                "from paddle.fluid.param_attr import ParamAttr",
                "import paddle.fluid as fluid"
                "", "def x2paddle_net():"
            ],
            indent=0)
J
jiangjiajun 已提交
129 130 131
        for layer_id, layer in self.layers.items():
            edges_in = self.edges_in.get(layer_id, [])
            edges_out = self.edges_out.get(layer_id, [])
J
jiangjiajun 已提交
132
            if len(edges_in) == 0 and len(edges_out) == 0:
J
jiangjiajun 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145
                continue

            line = ""

            if len(layer.outputs) == 1:
                line = layer.outputs[0]
            else:
                for output in layer.outputs:
                    line += "{}, ".format(output)
                line = line.strip(", ")

            line += " = {}(".format(layer.kernel)
            for k, v in layer.inputs.items():
J
jiangjiajun 已提交
146 147 148 149
                if isinstance(v, list):
                    line += "{}=[{}], ".format(k, ", ".join(v))
                else:
                    line += "{}={}, ".format(k, v)
J
jiangjiajun 已提交
150 151 152 153 154 155
            for k, v in layer.attrs.items():
                line += "{}={}, ".format(k, v)
            line = line.strip(", ")
            line += ")"
            write_code(f, [line], indent=1)

J
jiangjiajun 已提交
156 157 158 159 160 161 162
        write_code(
            f, [
                "return [{}], [{}]".format(", ".join(self.inputs),
                                           ", ".join(self.outputs))
            ],
            indent=1)
        f.close()
J
jiangjiajun 已提交
163

J
jiangjiajun 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    def gen_model(self, save_dir):
        code_dir = os.path.join(save_dir, 'model_with_code')
        infer_dir = os.path.join(save_dir, 'inference_model')
        self.gen_code(code_dir)
        sys.path.append(code_dir)
        import x2paddle_model
        scope = fluid.Scope()
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_program, startup_program):
                inputs, outputs = x2paddle_model.x2paddle_net()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)

                param_dir = os.path.join(code_dir, 'weights')
                for k, v in self.parameters.items():
                    if scope.find_var(k):
                        self.dump_parameter(k, v, param_dir)

                def if_exist(var):
                    b = os.path.exists(
                        os.path.join(os.path.join(param_dir, var.name)))
                    return b

                fluid.io.load_vars(
                    exe, param_dir, main_program, predicate=if_exist)
                fluid.io.save_inference_model(
                    dirname=infer_dir,
                    feeded_var_names=[i.name for i in inputs],
                    target_vars=outputs,
                    executor=exe)

    def dump_parameter(self, param_name, param, save_dir):
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        dtype_map = {
            "int16": [framework_pb2.VarType.INT16, 'h'],
            "int32": [framework_pb2.VarType.INT32, 'i'],
            "int64": [framework_pb2.VarType.INT64, 'q'],
            "float16": [framework_pb2.VarType.FP16, 'e'],
            "float32": [framework_pb2.VarType.FP32, 'f'],
            "float64": [framework_pb2.VarType.FP64, 'd'],
            "bool": [framework_pb2.VarType.BOOL, None]
        }
        shape = param.shape
        if str(param.dtype) in ['uint8', 'uint_8', 'bool']:
            param = param.astype('int64')
        if len(shape) == 0:
            assert param.size == 1, "Unexpected situation happend!"
            shape = [1]
        assert str(
            param.dtype) in dtype_map, "Unknown dtype {} of params: {}.".format(
                str(param.dtype), param_name)
        fp = open(os.path.join(save_dir, param_name), 'wb')
        numpy.array([0], dtype='int32').tofile(fp)
        numpy.array([0], dtype='int64').tofile(fp)
        numpy.array([0], dtype='int32').tofile(fp)
        tensor_desc = framework_pb2.VarType.TensorDesc()
        tensor_desc.data_type = dtype_map[str(param.dtype)][0]
        tensor_desc.dims.extend(shape)
        desc_size = tensor_desc.ByteSize()
        numpy.array([desc_size], dtype='int32').tofile(fp)
        fp.write(tensor_desc.SerializeToString())
        param.tofile(fp)
        fp.close()