program.py 8.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division
J
jiangjiajun 已提交
17 18 19
import paddle.fluid as fluid
from paddle.fluid.proto import framework_pb2
import numpy
J
jiangjiajun 已提交
20
import collections
J
jiangjiajun 已提交
21
import sys
J
jiangjiajun 已提交
22
import os
J
jiangjiajun 已提交
23
import six
J
jiangjiajun 已提交
24 25 26 27 28 29 30 31 32


class PaddleLayer(object):
    def __init__(self, kernel, inputs, outputs, **kwargs):
        assert isinstance(
            inputs,
            dict), "parameter 'inputs' for PaddleLayer should be type of dict"
        assert isinstance(
            outputs,
J
jiangjiajun 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
            list), "parameter 'outputs' for PaddleLayer should be type of list"
        for k, v in inputs.items():
            if isinstance(v, list):
                for i in v:
                    assert isinstance(
                        i, six.string_types
                    ), "value in inputs should be type of string or list of string"
            else:
                assert isinstance(v, six.string_types) or isinstance(
                    v, list
                ), "value in inputs should be type of string or list of string"
        for v in outputs:
            assert isinstance(
                v, six.
                string_types), "elements in outputs should be type of string"
J
jiangjiajun 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        self.kernel = kernel
        self.inputs = inputs
        self.outputs = outputs
        self.attrs = kwargs


class PaddleProgram(object):
    def __init__(self):
        self.layers = list()
        self.edges_out = dict()
        self.edges_in = dict()
        self.inputs = list()
        self.outputs = list()
        self.parameters = dict()

J
jiangjiajun 已提交
63 64 65 66 67 68 69 70
    def clear(self):
        self.layers = list()
        self.edges_out = dict()
        self.edges_in = dict()
        self.inputs = list()
        self.outputs = list()
        self.parameters = dict()

J
jiangjiajun 已提交
71 72
    def add_layer(self, kernel, inputs, outputs, **kwargs):
        layer = PaddleLayer(kernel, inputs, outputs, **kwargs)
J
jiangjiajun 已提交
73
        index = len(self.layers)
J
jiangjiajun 已提交
74
        self.layers.append(layer)
J
jiangjiajun 已提交
75
        return index
J
jiangjiajun 已提交
76 77

    def build(self):
J
jiangjiajun 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
        outputs_from_nodes = dict()
        for i, layer in enumerate(self.layers):
            for input_key, input_var in layer.inputs.items():
                vs = input_var
                if not isinstance(vs, list):
                    vs = [vs]
                for v in vs:
                    assert v in outputs_from_nodes, "Couldn't find {} in previous layers, the layers should be make by topological sort".format(
                        v)
                    in_layer_index = outputs_from_nodes[v]
                    if in_layer_index not in self.edges_out:
                        self.edges_out[in_layer_index] = list()
                    self.edges_out[in_layer_index].append(i)

                    if i not in self.edges_in:
                        self.edges_in[i] = list()
                    self.edges_in[i].append(in_layer_index)
J
jiangjiajun 已提交
95
            for output in layer.outputs:
J
jiangjiajun 已提交
96
                outputs_from_nodes[output] = i
J
jiangjiajun 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    def get_layer_outputs(self, i):
        return self.edges_out[i]

    def get_layer_inputs(self, i):
        return self.edges_in[i]

    def gen_code(self, code_dir):
        def write_code(f, code_list, indent=0):
            indent_blank = "    " * indent
            for code_line in code_list:
                if code_line.strip() == "":
                    f.write('\n')
                else:
                    f.write(indent_blank + code_line + '\n')

J
jiangjiajun 已提交
113 114 115
        if not os.path.exists(code_dir):
            os.makedirs(code_dir)
        f = open(os.path.join(code_dir, 'x2paddle_model.py'), 'w')
J
jiangjiajun 已提交
116 117 118 119 120 121 122 123 124 125

        write_code(
            f, [
                "from paddle.fluid.initializer import Constant",
                "from paddle.fluid.param_attr import ParamAttr",
                "import paddle.fluid as fluid"
                "", "def x2paddle_net():"
            ],
            indent=0)
        for i, layer in enumerate(self.layers):
J
jiangjiajun 已提交
126 127 128
            edges_in = self.edges_in.get(i, [])
            edges_out = self.edges_out.get(i, [])
            if len(edges_in) == 0 and len(edges_out) == 0:
J
jiangjiajun 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141
                continue

            line = ""

            if len(layer.outputs) == 1:
                line = layer.outputs[0]
            else:
                for output in layer.outputs:
                    line += "{}, ".format(output)
                line = line.strip(", ")

            line += " = {}(".format(layer.kernel)
            for k, v in layer.inputs.items():
J
jiangjiajun 已提交
142 143 144 145
                if isinstance(v, list):
                    line += "{}=[{}], ".format(k, ", ".join(v))
                else:
                    line += "{}={}, ".format(k, v)
J
jiangjiajun 已提交
146 147 148 149 150 151
            for k, v in layer.attrs.items():
                line += "{}={}, ".format(k, v)
            line = line.strip(", ")
            line += ")"
            write_code(f, [line], indent=1)

J
jiangjiajun 已提交
152 153 154 155 156 157 158
        write_code(
            f, [
                "return [{}], [{}]".format(", ".join(self.inputs),
                                           ", ".join(self.outputs))
            ],
            indent=1)
        f.close()
J
jiangjiajun 已提交
159

J
jiangjiajun 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def gen_model(self, save_dir):
        code_dir = os.path.join(save_dir, 'model_with_code')
        infer_dir = os.path.join(save_dir, 'inference_model')
        self.gen_code(code_dir)
        sys.path.append(code_dir)
        import x2paddle_model
        scope = fluid.Scope()
        startup_program = fluid.Program()
        main_program = fluid.Program()
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_program, startup_program):
                inputs, outputs = x2paddle_model.x2paddle_net()
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(startup_program)

                param_dir = os.path.join(code_dir, 'weights')
                for k, v in self.parameters.items():
                    if scope.find_var(k):
                        self.dump_parameter(k, v, param_dir)

                def if_exist(var):
                    b = os.path.exists(
                        os.path.join(os.path.join(param_dir, var.name)))
                    return b

                fluid.io.load_vars(
                    exe, param_dir, main_program, predicate=if_exist)
                fluid.io.save_inference_model(
                    dirname=infer_dir,
                    feeded_var_names=[i.name for i in inputs],
                    target_vars=outputs,
                    executor=exe)

    def dump_parameter(self, param_name, param, save_dir):
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        dtype_map = {
            "int16": [framework_pb2.VarType.INT16, 'h'],
            "int32": [framework_pb2.VarType.INT32, 'i'],
            "int64": [framework_pb2.VarType.INT64, 'q'],
            "float16": [framework_pb2.VarType.FP16, 'e'],
            "float32": [framework_pb2.VarType.FP32, 'f'],
            "float64": [framework_pb2.VarType.FP64, 'd'],
            "bool": [framework_pb2.VarType.BOOL, None]
        }
        shape = param.shape
        if str(param.dtype) in ['uint8', 'uint_8', 'bool']:
            param = param.astype('int64')
        if len(shape) == 0:
            assert param.size == 1, "Unexpected situation happend!"
            shape = [1]
        assert str(
            param.dtype) in dtype_map, "Unknown dtype {} of params: {}.".format(
                str(param.dtype), param_name)
        fp = open(os.path.join(save_dir, param_name), 'wb')
        numpy.array([0], dtype='int32').tofile(fp)
        numpy.array([0], dtype='int64').tofile(fp)
        numpy.array([0], dtype='int32').tofile(fp)
        tensor_desc = framework_pb2.VarType.TensorDesc()
        tensor_desc.data_type = dtype_map[str(param.dtype)][0]
        tensor_desc.dims.extend(shape)
        desc_size = tensor_desc.ByteSize()
        numpy.array([desc_size], dtype='int32').tofile(fp)
        fp.write(tensor_desc.SerializeToString())
        param.tofile(fp)
        fp.close()