caffe_op_mapper.py 43.4 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
SunAhong1993 已提交
14 15

import numbers
S
SunAhong1993 已提交
16
import numpy as np
J
jiangjiajun 已提交
17 18
from x2paddle.decoder.caffe_decoder import CaffeGraph
from x2paddle.core.op_mapper import OpMapper
S
SunAhong1993 已提交
19
from x2paddle.core.util import *
S
SunAhong1993 已提交
20
from x2paddle.op_mapper.caffe_custom_layer import *
S
SunAhong1993 已提交
21 22


J
jiangjiajun 已提交
23 24 25 26
class CaffeOpMapper(OpMapper):
    def __init__(self, decoder):
        super(CaffeOpMapper, self).__init__()
        self.graph = decoder.caffe_graph
S
SunAhong1993 已提交
27
        self.weights = dict()
J
jiangjiajun 已提交
28
        resolver = decoder.resolver
J
jiangjiajun 已提交
29
        self.used_custom_layers = {}
S
SunAhong1993 已提交
30 31 32 33 34 35

        print("Total nodes: {}".format(len(self.graph.topo_sort)))
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
S
SunAhong1993 已提交
36
                self.set_shape(node)
J
jiangjiajun 已提交
37 38
                func = getattr(self, op)
                func(node)
S
SunAhong1993 已提交
39 40 41 42 43
            elif op in custom_layers:
                self.set_shape(node, is_fluid_op=False)
                self.deal_custom_layer(node)
            else:
                raise Exception("Model are not supported yet.")
S
SunAhong1993 已提交
44

J
jiangjiajun 已提交
45 46 47
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
S
SunAhong1993 已提交
48
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
49 50 51 52 53 54 55 56 57 58 59
            op = node.layer_type
            if not hasattr(self, op) and op not in custom_layers:
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False
S
SunAhong1993 已提交
60

S
SunAhong1993 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    def set_shape(self, node, is_fluid_op=True):
        inputs = node.inputs
        input_shape = []
        for i, nm in enumerate(inputs):
            last_node = self.graph.get_node(nm)
            tmp = node.layer.bottom[i]
            idx = list(last_node.layer.top).index(tmp)
            input_shape.append(last_node.output_shape[idx])
        node.set_input_shape(input_shape)
        if is_fluid_op:
            node.set_output_shape(input_shape)
        else:
            node.set_output_shape(compute_output_shape(node),
                                  is_input=is_fluid_op)

    def adjust_parameters(self, node):
        data = node.data
S
SunAhong1993 已提交
78 79 80 81 82 83 84 85
        # When using the protobuf-backend, each parameter initially has four dimensions.
        # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
        # This implementation takes care of the common cases. However, it does leave the
        # potential for future issues.
        # The Caffe-backend does not suffer from this problem.
        data = list(data)

        squeeze_indices = [1]  # Squeeze biases.
S
SunAhong1993 已提交
86
        if node.layer_type == 'InnerProduct':
S
SunAhong1993 已提交
87 88 89
            squeeze_indices.append(0)  # Squeeze FC.

        for idx in squeeze_indices:
S
SunAhong1993 已提交
90 91
            print('Transform the weights of {}...'.format(node.layer_name +
                                                          str(idx)))
S
SunAhong1993 已提交
92 93
            if idx >= len(data):
                continue
S
SunAhong1993 已提交
94

S
SunAhong1993 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            d = data[idx]
            assert len(
                d.shape
            ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
                str(d.shape))

            shape_old = d.shape
            sq_axis = None
            if idx == 0:
                sq_axis = (0, 1)
            elif idx == 1:
                sq_axis = (0, 1, 2)
            else:
                continue

            data[idx] = np.squeeze(d, axis=sq_axis)
            shape_new = data[idx].shape
            if len(shape_old) != shape_new:
S
SunAhong1993 已提交
113 114
                print('squeeze idx:%d, with kind:%s,name:%s' % \
                        (idx, node.layer_type, node.layer.name))
S
SunAhong1993 已提交
115
        return data
S
SunAhong1993 已提交
116

S
SunAhong1993 已提交
117
    def get_kernel_parameters(self, kind, params):
S
SunAhong1993 已提交
118
        assert kind in ['Convolution', 'Pooling', 'Deconvolution']
S
SunAhong1993 已提交
119 120 121
        [k_h, k_w] = [1, 1]
        if isinstance(params.kernel_size, numbers.Number):
            [k_h, k_w] = [params.kernel_size] * 2
S
SunAhong1993 已提交
122
        elif len(params.kernel_size) > 0:
S
SunAhong1993 已提交
123 124 125 126 127 128
            k_h = params.kernel_h if params.kernel_h else params.kernel_size[0]
            k_w = params.kernel_w if params.kernel_w else params.kernel_size[
                len(params.kernel_size) - 1]
        [s_h, s_w] = [1, 1]
        if isinstance(params.stride, numbers.Number):
            [s_h, s_w] = [params.stride] * 2
S
SunAhong1993 已提交
129
        elif len(params.stride) > 0:
S
SunAhong1993 已提交
130 131 132 133 134 135
            s_h = params.stride_h if params.stride_h else params.stride[0]
            s_w = params.stride_w if params.stride_w else params.stride[
                len(params.stride) - 1]
        [p_h, p_w] = [0, 0]
        if isinstance(params.pad, numbers.Number):
            [p_h, p_w] = [params.pad] * 2
S
SunAhong1993 已提交
136
        elif len(params.pad) > 0:
S
SunAhong1993 已提交
137 138 139
            p_h = params.pad_h if params.pad_h else params.pad[0]
            p_w = params.pad_w if params.pad_w else params.pad[len(params.pad) -
                                                               1]
S
SunAhong1993 已提交
140 141 142
        dila_h = dila_w = 1
        group = 1
        c_o = 1
S
SunAhong1993 已提交
143
        if kind in ['Convolution', 'Deconvolution', 'ConvolutionDepthwise']:
S
SunAhong1993 已提交
144 145 146 147 148 149 150 151 152 153
            c_o = params.num_output
            dila_len = len(params.dilation)
            if dila_len == 2:
                dila_h = params.dilation[0]
                dila_w = params.dilation[1]
            elif dila_len == 1:
                dila_h = dila_w = params.dilation[0]
            else:
                assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                    dila_len)
S
SunAhong1993 已提交
154 155
        if kind in ['Convolution', 'Deconvolution']:
            group = params.group
S
SunAhong1993 已提交
156 157 158 159 160 161
        kernel = [k_h, k_w]
        stride = [s_h, s_w]
        pad = [p_h, p_w]
        dilation = [dila_h, dila_w]
        return c_o, kernel, stride, pad, dilation, group

S
SunAhong1993 已提交
162 163 164 165 166 167
    def get_input_name(self, node):
        if hasattr(node, "index"):
            return node.layer_name + "[{}]".format(node.index)
        else:
            return node.layer_name

S
SunAhong1993 已提交
168 169 170 171 172 173
    def is_BN(self, node):
        return True if node.layer_type == 'BatchNorm' else False

    def is_Scale(self, node):
        return True if node.layer_type == 'Scale' else False

S
SunAhong1993 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def Input(self, node):
        shape = list(node.layer.input_param.shape[0].dim)[1:]
        dtype = 'float32'
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Convolution(self, node):
        data = node.data
S
SunAhong1993 已提交
189 190
        assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
191
        data = self.adjust_parameters(node)
S
SunAhong1993 已提交
192 193 194 195 196 197 198 199
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
        params = node.layer.convolution_param
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        assert len(node.inputs
                   ) == 1, 'The count of Convolution node\'s input is not 1.'
S
SunAhong1993 已提交
200
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
201 202 203 204 205
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp

S
SunAhong1993 已提交
206
        attr = {
S
SunAhong1993 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
            'filter_size':
            kernel,
            'num_filters':
            channel,
            'stride':
            stride,
            'padding':
            pad,
            'dilation':
            dilation,
            'groups':
            group,
            'name':
            string(node.layer_name),
            'param_attr':
            string(node.layer_name + '_weights'),
            'bias_attr':
            False if len(data) == 1 else string(node.layer_name + '_bias'),
S
SunAhong1993 已提交
225 226 227 228 229 230 231 232
        }
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Deconvolution(self, node):
        data = node.data
S
SunAhong1993 已提交
233 234
        assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
235
        data = self.adjust_parameters(node)
S
SunAhong1993 已提交
236 237 238 239 240 241 242 243
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
        params = node.layer.convolution_param
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
        assert len(node.inputs
                   ) == 1, 'The count of Deconvolution node\'s input is not 1.'
S
SunAhong1993 已提交
244
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
245 246 247 248
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
249
        attr = {
S
SunAhong1993 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
            'output_size':
            None,
            'filter_size':
            kernel,
            'num_filters':
            channel,
            'stride':
            stride,
            'padding':
            pad,
            'dilation':
            dilation,
            'groups':
            group,
            'name':
            string(node.layer_name),
            'param_attr':
            string(node.layer_name + '_weights'),
            'bias_attr':
            False if len(data) == 1 else string(node.layer_name + '_bias')
S
SunAhong1993 已提交
270 271 272 273 274 275 276 277
        }
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Pooling(self, node):
        params = node.layer.pooling_param
S
SunAhong1993 已提交
278
        ceil_mode = getattr(params, 'ceil_mode', True)
S
SunAhong1993 已提交
279 280
        global_pool = getattr(params, 'global_pooling', False)
        kernel_default = [1, 1]
S
SunAhong1993 已提交
281
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
S
SunAhong1993 已提交
282
            node.layer_type, params)
S
SunAhong1993 已提交
283 284 285 286 287 288
        if params.pool == 0:
            pool_type = 'max'
        else:
            pool_type = 'avg'
        assert len(
            node.inputs) == 1, 'The count of Pooling node\'s input is not 1.'
S
SunAhong1993 已提交
289
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
290 291 292 293
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
294 295 296 297
        attr = {
            'pool_size': kernel,
            'pool_stride': stride,
            'pool_padding': pad,
S
SunAhong1993 已提交
298
            'ceil_mode': ceil_mode,
S
SunAhong1993 已提交
299 300
            'pool_type': string(pool_type),
            'exclusive': True,
S
SunAhong1993 已提交
301
            'global_pooling': global_pool,
S
SunAhong1993 已提交
302 303 304 305 306 307 308 309 310 311
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ReLU(self, node):
        assert len(
            node.inputs) == 1, 'The count of ReLU node\'s input is not 1.'
S
SunAhong1993 已提交
312
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
313 314 315 316
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer("relu",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def LRN(self, node):
        assert len(node.inputs) == 1, 'The count of LRN node\'s input is not 1.'
        params = node.layer.lrn_param
        # The window size must be an odd value. For a window
        # size of (2*n+1), Paddle defines depth_radius = n.
        assert params.local_size % 2 == 1
        # Caffe scales by (alpha/(2*n+1)), whereas Paddle
        # just scales by alpha (as does Krizhevsky's paper).
        # We'll account for that here.
        alpha = params.alpha / float(params.local_size)
S
SunAhong1993 已提交
333
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
334 335 336 337
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351
        attr = {
            'n': params.local_size,
            'k': 1.0,
            'alpha': alpha,
            'beta': params.beta,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("lrn",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def InnerProduct(self, node):
        data = node.data
S
SunAhong1993 已提交
352 353
        assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
354
        data = self.adjust_parameters(node)
S
SunAhong1993 已提交
355 356 357 358 359 360 361 362 363
        # Reshape the parameters to Paddle's ordering
        transpose_order = (1, 0)
        w = data[0]
        fc_shape = w.shape
        output_channels = fc_shape[0]
        w = w.reshape((output_channels, -1))
        w = w.transpose(transpose_order)
        data[0] = w

S
SunAhong1993 已提交
364 365 366 367 368 369 370 371
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
        assert len(node.inputs
                   ) == 1, 'The count of InnerProduct node\'s input is not 1.'
        params = node.layer.inner_product_param
        assert params.axis == 1
        assert params.bias_term == True
S
SunAhong1993 已提交
372
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
373 374 375 376
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
377
        attr = {
S
SunAhong1993 已提交
378 379 380 381 382 383 384 385 386 387
            'size':
            params.num_output,
            'name':
            string(node.layer_name),
            'act':
            None,
            'param_attr':
            string(node.layer_name + '_weights'),
            'bias_attr':
            False if len(data) == 1 else string(node.layer_name + '_bias')
S
SunAhong1993 已提交
388 389 390 391 392 393 394 395 396
        }
        node.fluid_code.add_layer("fc",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        assert len(
            node.inputs) == 1, 'The count of Softmax node\'s input is not 1.'
S
SunAhong1993 已提交
397
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
398 399 400 401
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
402 403 404 405 406
        params = node.layer.softmax_param
        axis = params.axis
        shape = node.input_shape[0]
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
S
SunAhong1993 已提交
407
        attr = {'axis': axis, 'name': string(node.layer_name + '_softmax')}
S
SunAhong1993 已提交
408
        node.fluid_code.add_layer("softmax",
S
SunAhong1993 已提交
409
                                  inputs=input,
S
SunAhong1993 已提交
410 411
                                  output=node,
                                  param_attr=attr)
S
SunAhong1993 已提交
412 413 414 415 416

    def Slice(self, node):
        assert len(
            node.inputs) == 1, 'The count of Slice node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
417 418 419 420
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
421 422 423
        params = node.layer.slice_param
        axis = params.axis
        points = list(params.slice_point)
S
SunAhong1993 已提交
424 425 426 427 428 429 430 431 432
        maxint32 = 2147483647
        points = [0] + points
        points.append(maxint32)
        i = 0
        node.fluid_code.add_note('{} = []'.format(node.layer_name))
        for i in range(len(points)):
            attr = {
                'axes': [axis],
                'starts': [points[i]],
S
SunAhong1993 已提交
433
                'ends': [points[i + 1]]
S
SunAhong1993 已提交
434 435 436
            }
            node.fluid_code.add_layer("slice",
                                      inputs=input,
S
SunAhong1993 已提交
437
                                      output=node.layer_name + '_' + str(i),
S
SunAhong1993 已提交
438 439 440 441 442
                                      param_attr=attr)
            node.fluid_code.add_note('{}.append({})'.format(
                node.layer_name, node.layer_name + '_' + str(i)))
            if i == len(points) - 2:
                break
S
SunAhong1993 已提交
443 444 445

    def Concat(self, node):
        assert len(
S
SunAhong1993 已提交
446 447
            node.inputs
        ) > 1, 'The count of Concat node\'s input is not more than 1.'
S
SunAhong1993 已提交
448 449 450
        inputs = []
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
451 452 453 454
            if self.is_Scale(input):
                tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
                if self.is_BN(tmp):
                    input = tmp
S
SunAhong1993 已提交
455 456 457
            inputs.append(input)
        params = node.layer.concat_param
        axis = params.axis
S
SunAhong1993 已提交
458 459 460 461 462 463 464 465 466 467
        attr = {'axis': axis, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def PReLU(self, node):
        assert len(
            node.inputs) == 1, 'The count of PReLU node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
468 469 470 471
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
472 473 474 475 476 477 478 479 480 481
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
        if mode_bool:
            mode = 'all'
        else:
            mode = 'channel'
        data = node.data
        assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
            node.layer_name, node.layer_type)
        self.weights[node.layer_name + '_weights'] = data[0]
S
SunAhong1993 已提交
482
        attr = {
S
SunAhong1993 已提交
483
            'mode': string(mode),
S
SunAhong1993 已提交
484 485
            'param_attr': string(node.layer_name + '_weights'),
            'name': string(node.layer_name)
S
SunAhong1993 已提交
486
        }
S
SunAhong1993 已提交
487 488 489 490 491 492 493 494 495
        node.fluid_code.add_layer("prelu",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sigmoid(self, node):
        assert len(
            node.inputs) == 1, 'The count of PReLU node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
496 497 498 499
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
500 501 502 503 504 505 506 507 508 509
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer("sigmoid",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AbsVal(self, node):
        assert len(
            node.inputs) == 1, 'The count of PReLU node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
510 511 512 513
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer("absval",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Accuracy(self, node):
        assert len(
            node.inputs) == 2, 'The count of Accuracy node\'s input is not 2.'
        inputs = []
        inputs[0] = None
        inputs[1] = None
        i = 0
        for shape in node.input_shape:
            if shape[1] == 1:
S
SunAhong1993 已提交
529 530 531 532 533 534
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                if self.is_Scale(input):
                    tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
                    if self.is_BN(tmp):
                        input = tmp
                inputs[1] = input
S
SunAhong1993 已提交
535
            else:
S
SunAhong1993 已提交
536 537 538 539 540 541
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                if self.is_Scale(input):
                    tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
                    if self.is_BN(tmp):
                        input = tmp
                inputs[0] = input
S
SunAhong1993 已提交
542 543 544 545 546 547 548 549 550 551
            i += 1
        params = node.layer.accuracy_param
        top_k = params.top_k
        axis = params.axis
        ignore_label = params.ignore_label
        # TODO(syf)
        assert axis == 1, 'PaddlePaddle can not support the situation when the axis is not 1.'
        assert not ignore_label >= 0, 'PaddlePaddle can not support the situation when the model has ignore label.'
        attr = {'k': top_k}
        node.fluid_code.add_layer("accuracy",
S
SunAhong1993 已提交
552 553 554
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
S
SunAhong1993 已提交
555 556 557 558 559

    def TanH(self, node):
        assert len(
            node.inputs) == 1, 'The count of TanH node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
560 561 562 563
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
564 565 566 567 568 569 570 571 572 573 574 575
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer("tanh",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Eltwise(self, node):
        assert len(
            node.inputs) == 2, 'The count of TanH node\'s input is not 2.'
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
S
SunAhong1993 已提交
576 577 578 579 580 581 582 583 584 585 586 587
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        if self.is_Scale(input0):
            tmp = self.graph.get_bottom_node(input0, idx=0, copy=True)
            if self.is_BN(tmp):
                input0 = tmp
        inputs.append(input0)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        if self.is_Scale(input1):
            tmp = self.graph.get_bottom_node(input1, idx=0, copy=True)
            if self.is_BN(tmp):
                input1 = tmp
        inputs.append(input1)
S
SunAhong1993 已提交
588
        if mode == 0:
S
SunAhong1993 已提交
589 590 591
            inputs_dict = {}
            inputs_dict['x'] = inputs[0]
            inputs_dict['y'] = inputs[1]
S
SunAhong1993 已提交
592 593
            attr = {'act': None, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("elementwise_mul",
S
SunAhong1993 已提交
594
                                      inputs=inputs_dict,
S
SunAhong1993 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
                                      output=node,
                                      param_attr=attr)
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
                input1_name = self.get_input_name(inputs[0])
                attr = {
                    'shape': [1],
                    'value': coeff[0],
                    'dtype': '{}.dtype'.format(input1_name)
                }
                node.fluid_code.add_layer("fill_constant",
                                          inputs=None,
                                          output=node.layer_name + '_const1',
                                          param_attr=attr)
                attr = {'act': None, 'name': string(node.layer_name + '_mul1')}
                node.fluid_code.add_layer("elementwise_mul",
                                          inputs=input1_name + ', ' +
                                          node.layer_name + '_const1',
                                          output=node.layer_name + '_mul1',
                                          param_attr=attr)
                input2_name = self.get_input_name(inputs[1])
                attr = {
                    'shape': [1],
                    'value': coeff[1],
                    'dtype': '{}.dtype'.format(input2_name)
                }
                node.fluid_code.add_layer("fill_constant",
                                          inputs=None,
                                          output=node.layer_name + '_const2',
                                          param_attr=attr)
                attr = {'act': None, 'name': string(node.layer_name + '_mul2')}
                node.fluid_code.add_layer("elementwise_mul",
                                          inputs=input2_name + ', ' +
                                          node.layer_name + '_const2',
                                          output=node.layer_name + '_mul2',
                                          param_attr=attr)

                attr = {'act': None, 'name': string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs='{}_mul1, {}_mul2'.format(
                                              node.layer_name, node.layer_name),
                                          output=node,
                                          param_attr=attr)
            else:
S
SunAhong1993 已提交
640 641 642
                inputs_dict = {}
                inputs_dict['x'] = inputs[0]
                inputs_dict['y'] = inputs[1]
S
SunAhong1993 已提交
643 644
                attr = {'act': None, 'name': string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
S
SunAhong1993 已提交
645
                                          inputs=inputs_dict,
S
SunAhong1993 已提交
646 647 648
                                          output=node,
                                          param_attr=attr)
        else:
S
SunAhong1993 已提交
649 650 651
            inputs_dict = {}
            inputs_dict['x'] = inputs[0]
            inputs_dict['y'] = inputs[1]
S
SunAhong1993 已提交
652 653
            attr = {'act': None, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("elementwise_max",
S
SunAhong1993 已提交
654
                                      inputs=inputs_dict,
S
SunAhong1993 已提交
655 656 657 658 659 660 661 662
                                      output=node,
                                      param_attr=attr)

    def BatchNorm(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, 'The count of BatchNorm node\'s input and output is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
663 664 665 666
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
S
SunAhong1993 已提交
667
        params = node.layer.batch_norm_param
S
SunAhong1993 已提交
668
        if hasattr(params, 'eps'):
S
SunAhong1993 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
            eps = params.eps
        else:
            eps = 1e-5
        assert len(node.data) == 3
        node.data = [np.squeeze(i) for i in node.data]
        mean, variance, scale = node.data
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.weights[node.layer_name + '_mean'] = mean
        self.weights[node.layer_name + '_variance'] = variance
        if self.graph.get_node(node.outputs[0]).layer_type == 'Scale':
            data = self.graph.get_node(node.outputs[0]).data
            self.weights[node.layer_name + '_scale'] = np.squeeze(data[0])
            self.weights[node.layer_name + '_offset'] = np.squeeze(data[1])
            attr = {
                'is_test': True,
                'param_attr': string(node.layer_name + '_scale'),
                'bias_attr': string(node.layer_name + '_offset'),
                'moving_mean_name': string(node.layer_name + '_mean'),
                'moving_variance_name': string(node.layer_name + '_variance'),
                'epsilon': eps,
                'name': string(node.layer_name)
            }
        else:
            attr = {
                'is_test': True,
                'param_attr': None,
                'bias_attr': None,
                'moving_mean_name': string(node.layer_name + '_mean'),
                'moving_variance_name': string(node.layer_name + '_variance'),
                'epsilon': eps,
                'name': string(node.layer_name)
            }
        node.fluid_code.add_layer("batch_norm",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Scale(self, node):
        assert len(
S
SunAhong1993 已提交
711
            node.inputs) == 1, 'The count of Scale node\'s input is not 1.'
S
SunAhong1993 已提交
712 713 714 715 716 717
        if len(node.inputs) == 1 and self.graph.get_node(
                node.inputs[0]).layer_type == 'BatchNorm':
            return
        else:
            self.weights[node.layer_name + '_scale'] = np.squeeze(nose.data[0])
            self.weights[node.layer_name + '_offset'] = np.squeeze(node.data[1])
S
SunAhong1993 已提交
718
            params = node.layer.scale_param
S
SunAhong1993 已提交
719 720 721 722 723 724 725 726 727 728
            axis = params.axis
            num_axes = params.num_axes
            assert num_axes == 1, "layer scale not support this num_axes[%d] now" % (
                num_axes)
            inputs = []
            if len(node.inputs) == 2:
                # for two tensor, here resets axis to 1. Maybe there is a bug for unkown case.
                axis = 1
                bias_shape = node.input_shape[0][axis:axis + num_axes]
                input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
729 730 731 732
                if self.is_Scale(input0):
                    tmp = self.graph.get_bottom_node(input0, idx=0, copy=True)
                    if self.is_BN(tmp):
                        input0 = tmp
S
SunAhong1993 已提交
733
                input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
734 735 736 737
                if self.is_Scale(input1):
                    tmp = self.graph.get_bottom_node(input1, idx=0, copy=True)
                    if self.is_BN(tmp):
                        input1 = tmp
S
SunAhong1993 已提交
738 739 740 741 742 743 744 745 746 747
                inputs.append(input0)
                inputs.append(input1)
                attr = {'axis': axis, 'name': string(node.layer_name + '_mul')}
                node.fluid_code.add_layer("elementwise_mul",
                                          inputs=inputs,
                                          output=node.layer_name + '_mul',
                                          param_attr=attr)
            else:
                bias_shape = node.input_shape[0][axis:axis + num_axes]
                input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
748 749 750 751
                if self.is_Scale(input0):
                    tmp = self.graph.get_bottom_node(input0, idx=0, copy=True)
                    if self.is_BN(tmp):
                        input0 = tmp
S
SunAhong1993 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
                input0_name = self.get_input_name(input0)
                attr = {
                    'dtype': '{}.dtype'.formatr(input0_name),
                    'shape': bias_shape,
                    'name': string(node.layer_name + '_cparam1'),
                    'attr': string(node.layer_name + '_scale'),
                    'is_bias': True,
                    'default_initializer': 'Constant(value=1.0)'
                }
                node.fluid_code.add_layer("create_parameter",
                                          inputs=None,
                                          output=node,
                                          param_attr=attr)
                inputs.append(input0)
                inputs.append(node)
                attr = {'axis': axis, 'name': string(node.layer_name + '_mul')}
                node.fluid_code.add_layer("elementwise_mul",
                                          inputs=inputs,
                                          output=node.layer_name + '_mul',
                                          param_attr=attr)
            scale_shape = bias_shape
            input0_name = self.get_input_name(input0)
            attr = {
                'dtype': '{}.dtype'.formatr(input0_name),
                'shape': scale_shape,
                'name': string(node.layer_name + '_cparam2'),
                'attr': string(node.layer_name + '_offset'),
                'is_bias': True,
                'default_initializer': 'Constant(value=1.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node.layer_name + '_offset_param',
                                      param_attr=attr)
            attr = {'axis': axis, 'name': string(node.layer_name + '_add')}
            node.fluid_code.add_layer("elementwise_add",
                                      inputs='{}_mul, {}_offset_param'.format(
                                          node.layer_name, node.layer_name),
                                      output=node,
                                      param_attr=attr)
S
SunAhong1993 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890

    def Reshape(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, 'The count of Reshape node\'s input and output is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        top_count = len(input.layer.top)
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
        is_inplace, = False if top_count == 1 else True
        output_shape = node.output_shape[0]
        attr = {
            'shape': output_shape,
            'inplace': is_inplace,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, 'The count of ArgMax node\'s input and output is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
        input_shape = node.input_shape[0]
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
        axis = parmas.axis if hasattr(params, axis) else -1
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
            attr = {'k': top_k, 'name': string(node.layer_name + '_topk')}
            node.fluid_code.add_layer("topk",
                                      inputs=input,
                                      output='{}_topk_var, {}_index_var'.format(
                                          node.layer_name, node.layer_name),
                                      param_attr=attr)
            attr = {'dtype': '{}_topk_var.dtype'.format(node.layer_name)}
            node.fluid_code.add_layer(
                "cast",
                inputs='{}_index_var'.format(node.layer_name),
                output='{}_index_var'.format(node.layer_name),
                param_attr=attr)
            attr = {'axis': axis, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("concat",
                                      inputs='{}_topk_var, {}_index_var'.format(
                                          node.layer_name, node.layer_name),
                                      output=node,
                                      param_attr=attr)
        else:
            attr = {'k': top_k, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("topk",
                                      inputs=input,
                                      output='_, {}'.format(node.layer_name),
                                      param_attr=attr)

    def Crop(self, node):
        assert len(
            node.inputs) == 2, 'The count of Crop node\'s input is not 2.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
        example = self.graph.get_bottom_node(node, idx=1, copy=True)
        if self.is_Scale(example):
            tmp = self.graph.get_bottom_node(example, idx=0, copy=True)
            if self.is_BN(tmp):
                example = tmp
        params = node.layer.crop_param
        axis = parmas.axis
        input_shape = node.input_shape[0]
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, offset):
            offset = list(params.offset)
            assert (len(input_shape) - axis) == len(
                offset), "invalid offset[%s] in crop layer" % (str(offset))
            offset_real = [0] * axis + offset
        attr = {'offsets': offset_real, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("crop",
                                  inputs={
                                      'x': input,
                                      'y': example
                                  },
                                  output=node,
                                  param_attr=attr)

S
SunAhong1993 已提交
891
    def Flatten(self, node):
S
SunAhong1993 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
        assert len(
            node.inputs
        ) == 1, 'The count of DetectionOutput node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
        shape = node.output_shape[0]
        attr = {'shape': shape, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Power(self, node):
        assert len(
            node.inputs) == 1, 'The count of Permute node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
        params = node.layer.power_param
        power = params.power
        scale = params.scale
        shift = params.shift
        attr = {
            'scale': scale,
            'bias': shift,
            'bias_after_scale': True,
            'name': string(node.layer_name + '_scale')
        }
        node.fluid_code.add_layer("scale",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        attr = {'factor': power, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("pow",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, 'The count of Reduction node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        if self.is_Scale(input):
            tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
            if self.is_BN(tmp):
                input = tmp
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
        input_len = len(node.input_shape[0])
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        if operation == 1:  ## operation = SUM
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_sum",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif operation == 2:  ## operation = ASUM
            attr = {'name': string(node.layer_name + '_abs')}
            node.fluid_code.add_layer("abs",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_sum",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        elif operation == 3:  ## operation = SUMSQ
            attr = {'factor': 2.0, 'name': string(node.layer_name + '_pow')}
            node.fluid_code.add_layer("pow",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_sum",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        else:  ## operation = MEAN
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_mean",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        attr = {'scale': coeff}
        node.fluid_code.add_layer("scale",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)

S
SunAhong1993 已提交
1009 1010 1011 1012 1013 1014 1015 1016
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        kwargs['input_shape'] = node.input_shape
        data = node.data
S
SunAhong1993 已提交
1017 1018 1019 1020 1021
        if data is not None:
            data = self.adjust_parameters(node)
            weights_name = deal_weights(node)
            for i in range(len(data)):
                self.weights[weights_name[i]] = data[i]
S
SunAhong1993 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        inputs_node = []
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
            if self.is_Scale(input):
                tmp = self.graph.get_bottom_node(input, idx=0, copy=True)
                if self.is_BN(tmp):
                    input = tmp
            inputs_node.append(input)
        node.fluid_code.add_layer(func.__code__.co_name,
                                  inputs=inputs_node,
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
J
jiangjiajun 已提交
1035 1036
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code