caffe_op_mapper.py 39.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
S
SunAhong1993 已提交
14 15

import numbers
S
SunAhong1993 已提交
16
import numpy as np
J
jiangjiajun 已提交
17 18
from x2paddle.decoder.caffe_decoder import CaffeGraph
from x2paddle.core.op_mapper import OpMapper
S
SunAhong1993 已提交
19
from x2paddle.core.util import *
20
from x2paddle.op_mapper import caffe_shape
S
SunAhong1993 已提交
21
from x2paddle.op_mapper.caffe_custom_layer import *
S
SunAhong1993 已提交
22 23


J
jiangjiajun 已提交
24
class CaffeOpMapper(OpMapper):
S
SunAhong1993 已提交
25 26 27 28 29 30 31
    directly_map_ops = {
        'ReLU': 'relu',
        'AbsVal': 'abs',
        'Sigmoid': 'sigmoid',
        'TanH': 'tanh',
    }

J
jiangjiajun 已提交
32 33 34
    def __init__(self, decoder):
        super(CaffeOpMapper, self).__init__()
        self.graph = decoder.caffe_graph
S
SunAhong1993 已提交
35
        self.weights = dict()
J
jiangjiajun 已提交
36
        resolver = decoder.resolver
J
jiangjiajun 已提交
37
        self.used_custom_layers = {}
S
SunAhong1993 已提交
38 39 40 41

        print("Total nodes: {}".format(len(self.graph.topo_sort)))
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
S
SunAhong1993 已提交
42 43
            if node.layer_type == 'DepthwiseConvolution':
                node.layer_type = 'ConvolutionDepthwise'
S
SunAhong1993 已提交
44 45
            op = node.layer_type
            if hasattr(self, op):
46
                self.set_node_shape(node)
J
jiangjiajun 已提交
47 48
                func = getattr(self, op)
                func(node)
S
SunAhong1993 已提交
49
            elif op in custom_layers:
50
                self.set_node_shape(node, is_fluid_op=False)
S
SunAhong1993 已提交
51
                self.deal_custom_layer(node)
S
SunAhong1993 已提交
52 53 54
            elif op in self.directly_map_ops:
                self.set_node_shape(node)
                self.directly_map(node)
S
SunAhong1993 已提交
55
            else:
S
SunAhong1993 已提交
56 57
                raise Exception(
                    "The op {} in model is not supported yet.".format(op))
S
SunAhong1993 已提交
58

J
jiangjiajun 已提交
59 60 61
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
S
SunAhong1993 已提交
62
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
63 64 65 66 67 68 69 70 71 72 73
            op = node.layer_type
            if not hasattr(self, op) and op not in custom_layers:
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
            print("There are {} ops not supported yet, list as below".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print(op)
            return False
S
SunAhong1993 已提交
74

75
    def set_node_shape(self, node, is_fluid_op=True):
S
SunAhong1993 已提交
76 77 78 79 80 81 82
        inputs = node.inputs
        input_shape = []
        for i, nm in enumerate(inputs):
            last_node = self.graph.get_node(nm)
            tmp = node.layer.bottom[i]
            idx = list(last_node.layer.top).index(tmp)
            input_shape.append(last_node.output_shape[idx])
83 84 85 86

        node.input_shape = input_shape

        func_name = 'shape_' + node.layer_type.lower()
S
SunAhong1993 已提交
87
        if is_fluid_op:
88 89
            node.output_shape = getattr(caffe_shape, func_name)(node.layer,
                                                                input_shape)
S
SunAhong1993 已提交
90
        else:
91
            node.output_shape = compute_output_shape(node)
S
SunAhong1993 已提交
92 93 94

    def adjust_parameters(self, node):
        data = node.data
S
SunAhong1993 已提交
95 96 97 98 99 100 101 102
        # When using the protobuf-backend, each parameter initially has four dimensions.
        # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
        # This implementation takes care of the common cases. However, it does leave the
        # potential for future issues.
        # The Caffe-backend does not suffer from this problem.
        data = list(data)

        squeeze_indices = [1]  # Squeeze biases.
S
SunAhong1993 已提交
103
        if node.layer_type == 'InnerProduct':
S
SunAhong1993 已提交
104 105 106 107 108
            squeeze_indices.append(0)  # Squeeze FC.

        for idx in squeeze_indices:
            if idx >= len(data):
                continue
S
SunAhong1993 已提交
109

S
SunAhong1993 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            d = data[idx]
            assert len(
                d.shape
            ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
                str(d.shape))

            shape_old = d.shape
            sq_axis = None
            if idx == 0:
                sq_axis = (0, 1)
            elif idx == 1:
                sq_axis = (0, 1, 2)
            else:
                continue

            data[idx] = np.squeeze(d, axis=sq_axis)
            shape_new = data[idx].shape
        return data
S
SunAhong1993 已提交
128

S
SunAhong1993 已提交
129
    def get_kernel_parameters(self, kind, params):
S
SunAhong1993 已提交
130
        assert kind in ['Convolution', 'Pooling', 'Deconvolution']
S
SunAhong1993 已提交
131 132 133
        [k_h, k_w] = [1, 1]
        if isinstance(params.kernel_size, numbers.Number):
            [k_h, k_w] = [params.kernel_size] * 2
S
SunAhong1993 已提交
134
        elif len(params.kernel_size) > 0:
C
channingss 已提交
135 136
            k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[
                0]
S
SunAhong1993 已提交
137
            k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
S
SunAhong1993 已提交
138
                len(params.kernel_size) - 1]
S
SunAhong1993 已提交
139 140 141
        elif params.kernel_h > 0 or params.kernel_w > 0:
            k_h = params.kernel_h
            k_w = params.kernel_w
S
SunAhong1993 已提交
142 143 144
        [s_h, s_w] = [1, 1]
        if isinstance(params.stride, numbers.Number):
            [s_h, s_w] = [params.stride] * 2
S
SunAhong1993 已提交
145
        elif len(params.stride) > 0:
S
SunAhong1993 已提交
146 147
            s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
            s_w = params.stride_w if params.stride_w > 0 else params.stride[
S
SunAhong1993 已提交
148
                len(params.stride) - 1]
S
SunAhong1993 已提交
149 150 151
        elif params.stride_h > 0 or params.stride_w > 0:
            s_h = params.stride_h
            s_w = params.stride_w
S
SunAhong1993 已提交
152 153 154
        [p_h, p_w] = [0, 0]
        if isinstance(params.pad, numbers.Number):
            [p_h, p_w] = [params.pad] * 2
S
SunAhong1993 已提交
155
        elif len(params.pad) > 0:
S
SunAhong1993 已提交
156
            p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
C
channingss 已提交
157 158
            p_w = params.pad_w if params.pad_w > 0 else params.pad[
                len(params.pad) - 1]
S
SunAhong1993 已提交
159 160 161
        elif params.pad_h > 0 or params.pad_w > 0:
            p_h = params.pad_h
            p_w = params.pad_w
S
SunAhong1993 已提交
162 163 164
        dila_h = dila_w = 1
        group = 1
        c_o = 1
165
        if kind in ['Convolution', 'Deconvolution']:
S
SunAhong1993 已提交
166 167 168 169 170 171 172 173 174 175
            c_o = params.num_output
            dila_len = len(params.dilation)
            if dila_len == 2:
                dila_h = params.dilation[0]
                dila_w = params.dilation[1]
            elif dila_len == 1:
                dila_h = dila_w = params.dilation[0]
            else:
                assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                    dila_len)
S
SunAhong1993 已提交
176 177
        if kind in ['Convolution', 'Deconvolution']:
            group = params.group
S
SunAhong1993 已提交
178 179 180 181 182 183
        kernel = [k_h, k_w]
        stride = [s_h, s_w]
        pad = [p_h, p_w]
        dilation = [dila_h, dila_w]
        return c_o, kernel, stride, pad, dilation, group

S
SunAhong1993 已提交
184 185 186 187 188 189
    def get_input_name(self, node):
        if hasattr(node, "index"):
            return node.layer_name + "[{}]".format(node.index)
        else:
            return node.layer_name

S
SunAhong1993 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202
    def Input(self, node):
        shape = list(node.layer.input_param.shape[0].dim)[1:]
        dtype = 'float32'
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

S
SunAhong1993 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def MemoryData(self, node):
        # TODO(syf): Paddlepaddle can't fully support
        shape = node.output_shape[0][1:]
        dtype = 'float32'
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node.layer_name + '0',
                                  param_attr=attr)
        node.fluid_code.add_note('{} = [{}]'.format(node.layer_name,
                                                    node.layer_name + '0'))

S
SunAhong1993 已提交
219 220 221 222 223
    def Convolution(self, node):
        data = node.data
        params = node.layer.convolution_param
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
S
SunAhong1993 已提交
224 225
        if data is None:
            data = []
C
channingss 已提交
226 227 228
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
229 230
            input_c = node.input_shape[0][1]
            output_c = channel
C
channingss 已提交
231 232 233 234 235 236
            data.append(
                np.zeros([output_c, input_c, kernel[0],
                          kernel[1]]).astype('float32'))
            data.append(np.zeros([
                output_c,
            ])).astype('float32')
S
SunAhong1993 已提交
237 238 239 240 241
        else:
            data = self.adjust_parameters(node)
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
S
SunAhong1993 已提交
242 243
        assert len(node.inputs
                   ) == 1, 'The count of Convolution node\'s input is not 1.'
S
SunAhong1993 已提交
244
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
245

S
SunAhong1993 已提交
246
        attr = {
S
SunAhong1993 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
            'filter_size':
            kernel,
            'num_filters':
            channel,
            'stride':
            stride,
            'padding':
            pad,
            'dilation':
            dilation,
            'groups':
            group,
            'name':
            string(node.layer_name),
            'param_attr':
            string(node.layer_name + '_weights'),
            'bias_attr':
            False if len(data) == 1 else string(node.layer_name + '_bias'),
S
SunAhong1993 已提交
265 266 267 268 269 270 271 272 273 274 275
        }
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Deconvolution(self, node):
        data = node.data
        params = node.layer.convolution_param
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
            node.layer_type, params)
S
SunAhong1993 已提交
276 277
        if data is None:
            data = []
C
channingss 已提交
278 279 280
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
281 282
            input_c = node.input_shape[0][1]
            output_c = channel
C
channingss 已提交
283 284 285 286 287 288
            data.append(
                np.zeros([output_c, input_c, kernel[0],
                          kernel[1]]).astype('float32'))
            data.append(np.zeros([
                output_c,
            ]).astype('float32'))
S
SunAhong1993 已提交
289 290 291 292 293
        else:
            data = self.adjust_parameters(node)
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
S
SunAhong1993 已提交
294 295
        assert len(node.inputs
                   ) == 1, 'The count of Deconvolution node\'s input is not 1.'
S
SunAhong1993 已提交
296
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
297
        attr = {
S
SunAhong1993 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            'output_size':
            None,
            'filter_size':
            kernel,
            'num_filters':
            channel,
            'stride':
            stride,
            'padding':
            pad,
            'dilation':
            dilation,
            'groups':
            group,
            'name':
            string(node.layer_name),
            'param_attr':
            string(node.layer_name + '_weights'),
            'bias_attr':
            False if len(data) == 1 else string(node.layer_name + '_bias')
S
SunAhong1993 已提交
318 319 320 321 322 323 324 325
        }
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Pooling(self, node):
        params = node.layer.pooling_param
S
SunAhong1993 已提交
326
        ceil_mode = getattr(params, 'ceil_mode', True)
S
SunAhong1993 已提交
327 328
        global_pool = getattr(params, 'global_pooling', False)
        kernel_default = [1, 1]
S
SunAhong1993 已提交
329
        channel, kernel, stride, pad, dilation, group = self.get_kernel_parameters(
S
SunAhong1993 已提交
330
            node.layer_type, params)
S
SunAhong1993 已提交
331 332 333 334 335 336
        if params.pool == 0:
            pool_type = 'max'
        else:
            pool_type = 'avg'
        assert len(
            node.inputs) == 1, 'The count of Pooling node\'s input is not 1.'
S
SunAhong1993 已提交
337
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
338 339 340 341
        attr = {
            'pool_size': kernel,
            'pool_stride': stride,
            'pool_padding': pad,
S
SunAhong1993 已提交
342
            'ceil_mode': ceil_mode,
S
SunAhong1993 已提交
343
            'pool_type': string(pool_type),
S
SunAhong1993 已提交
344
            'exclusive': False,
S
SunAhong1993 已提交
345
            'global_pooling': global_pool,
S
SunAhong1993 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def LRN(self, node):
        assert len(node.inputs) == 1, 'The count of LRN node\'s input is not 1.'
        params = node.layer.lrn_param
        # The window size must be an odd value. For a window
        # size of (2*n+1), Paddle defines depth_radius = n.
        assert params.local_size % 2 == 1
        # Caffe scales by (alpha/(2*n+1)), whereas Paddle
        # just scales by alpha (as does Krizhevsky's paper).
        # We'll account for that here.
        alpha = params.alpha / float(params.local_size)
S
SunAhong1993 已提交
363
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
364 365
        attr = {
            'n': params.local_size,
S
SunAhong1993 已提交
366
            'k': params.k,
S
SunAhong1993 已提交
367 368 369 370 371 372 373 374 375 376 377
            'alpha': alpha,
            'beta': params.beta,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("lrn",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def InnerProduct(self, node):
        data = node.data
S
SunAhong1993 已提交
378 379
        params = node.layer.inner_product_param
        if data is None:
C
channingss 已提交
380 381 382
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0.'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
383 384 385
            input_c = node.input_shape[0][1]
            output_c = params.num_output
            data = []
C
channingss 已提交
386 387 388 389 390
            data.append(
                np.zeros([input_c,
                          output_c]).astype('float32').astype('float32'))
            data.append(
                np.zeros([output_c]).astype('float32').astype('float32'))
S
SunAhong1993 已提交
391 392 393 394 395 396 397 398 399 400
        else:
            data = self.adjust_parameters(node)
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w
S
SunAhong1993 已提交
401

S
SunAhong1993 已提交
402 403 404 405 406
        self.weights[node.layer_name + '_weights'] = data[0]
        if len(data) == 2:
            self.weights[node.layer_name + '_bias'] = data[1]
        assert len(node.inputs
                   ) == 1, 'The count of InnerProduct node\'s input is not 1.'
S
SunAhong1993 已提交
407
        #params = node.layer.inner_product_param
S
SunAhong1993 已提交
408 409
        assert params.axis == 1
        assert params.bias_term == True
S
SunAhong1993 已提交
410
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
411
        attr = {
S
SunAhong1993 已提交
412 413 414 415 416 417 418 419 420 421
            'size':
            params.num_output,
            'name':
            string(node.layer_name),
            'act':
            None,
            'param_attr':
            string(node.layer_name + '_weights'),
            'bias_attr':
            False if len(data) == 1 else string(node.layer_name + '_bias')
S
SunAhong1993 已提交
422 423 424 425 426 427 428 429 430
        }
        node.fluid_code.add_layer("fc",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        assert len(
            node.inputs) == 1, 'The count of Softmax node\'s input is not 1.'
S
SunAhong1993 已提交
431
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
432 433 434 435 436
        params = node.layer.softmax_param
        axis = params.axis
        shape = node.input_shape[0]
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
S
SunAhong1993 已提交
437
        attr = {'axis': axis, 'name': string(node.layer_name + '_softmax')}
S
SunAhong1993 已提交
438
        node.fluid_code.add_layer("softmax",
S
SunAhong1993 已提交
439
                                  inputs=input,
S
SunAhong1993 已提交
440 441
                                  output=node,
                                  param_attr=attr)
S
SunAhong1993 已提交
442 443 444 445 446

    def Slice(self, node):
        assert len(
            node.inputs) == 1, 'The count of Slice node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
447
        top_len = len(node.layer.top)
S
SunAhong1993 已提交
448 449
        params = node.layer.slice_param
        axis = params.axis
S
SunAhong1993 已提交
450 451 452
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
S
SunAhong1993 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
        output_shape = node.output_shape
        sections_list = []
        for s in output_shape:
            sections_list.append(s[axis])
        attr = {
            'num_or_sections': sections_list,
            'dim': axis,
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node.layer_name,
                                  param_attr=attr)
C
channingss 已提交
466

S
SunAhong1993 已提交
467 468
    def Concat(self, node):
        assert len(
S
SunAhong1993 已提交
469 470
            node.inputs
        ) > 1, 'The count of Concat node\'s input is not more than 1.'
S
SunAhong1993 已提交
471 472 473 474 475 476
        inputs = []
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
            inputs.append(input)
        params = node.layer.concat_param
        axis = params.axis
S
SunAhong1993 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        attr = {'axis': axis, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def PReLU(self, node):
        assert len(
            node.inputs) == 1, 'The count of PReLU node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
        if mode_bool:
            mode = 'all'
        else:
            mode = 'channel'
        data = node.data
        assert data is not None, 'The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.'.format(
            node.layer_name, node.layer_type)
        self.weights[node.layer_name + '_weights'] = data[0]
S
SunAhong1993 已提交
497
        attr = {
S
SunAhong1993 已提交
498
            'mode': string(mode),
S
SunAhong1993 已提交
499 500
            'param_attr': string(node.layer_name + '_weights'),
            'name': string(node.layer_name)
S
SunAhong1993 已提交
501
        }
S
SunAhong1993 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515
        node.fluid_code.add_layer("prelu",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Accuracy(self, node):
        assert len(
            node.inputs) == 2, 'The count of Accuracy node\'s input is not 2.'
        inputs = []
        inputs[0] = None
        inputs[1] = None
        i = 0
        for shape in node.input_shape:
            if shape[1] == 1:
S
SunAhong1993 已提交
516 517
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                inputs[1] = input
S
SunAhong1993 已提交
518
            else:
S
SunAhong1993 已提交
519 520
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                inputs[0] = input
S
SunAhong1993 已提交
521 522 523 524 525 526 527 528 529
            i += 1
        params = node.layer.accuracy_param
        top_k = params.top_k
        axis = params.axis
        ignore_label = params.ignore_label
        assert axis == 1, 'PaddlePaddle can not support the situation when the axis is not 1.'
        assert not ignore_label >= 0, 'PaddlePaddle can not support the situation when the model has ignore label.'
        attr = {'k': top_k}
        node.fluid_code.add_layer("accuracy",
S
SunAhong1993 已提交
530 531 532
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
S
SunAhong1993 已提交
533 534 535 536 537 538 539

    def Eltwise(self, node):
        assert len(
            node.inputs) == 2, 'The count of TanH node\'s input is not 2.'
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
S
SunAhong1993 已提交
540 541 542 543
        input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
        inputs.append(input0)
        input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
        inputs.append(input1)
S
SunAhong1993 已提交
544
        if mode == 0:
S
SunAhong1993 已提交
545 546 547
            inputs_dict = {}
            inputs_dict['x'] = inputs[0]
            inputs_dict['y'] = inputs[1]
S
SunAhong1993 已提交
548 549
            attr = {'act': None, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("elementwise_mul",
S
SunAhong1993 已提交
550
                                      inputs=inputs_dict,
S
SunAhong1993 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
                                      output=node,
                                      param_attr=attr)
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
                input1_name = self.get_input_name(inputs[0])
                attr = {
                    'shape': [1],
                    'value': coeff[0],
                    'dtype': '{}.dtype'.format(input1_name)
                }
                node.fluid_code.add_layer("fill_constant",
                                          inputs=None,
                                          output=node.layer_name + '_const1',
                                          param_attr=attr)
                attr = {'act': None, 'name': string(node.layer_name + '_mul1')}
                node.fluid_code.add_layer("elementwise_mul",
                                          inputs=input1_name + ', ' +
                                          node.layer_name + '_const1',
                                          output=node.layer_name + '_mul1',
                                          param_attr=attr)
                input2_name = self.get_input_name(inputs[1])
                attr = {
                    'shape': [1],
                    'value': coeff[1],
                    'dtype': '{}.dtype'.format(input2_name)
                }
                node.fluid_code.add_layer("fill_constant",
                                          inputs=None,
                                          output=node.layer_name + '_const2',
                                          param_attr=attr)
                attr = {'act': None, 'name': string(node.layer_name + '_mul2')}
                node.fluid_code.add_layer("elementwise_mul",
                                          inputs=input2_name + ', ' +
                                          node.layer_name + '_const2',
                                          output=node.layer_name + '_mul2',
                                          param_attr=attr)

                attr = {'act': None, 'name': string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
                                          inputs='{}_mul1, {}_mul2'.format(
                                              node.layer_name, node.layer_name),
                                          output=node,
                                          param_attr=attr)
            else:
S
SunAhong1993 已提交
596 597 598
                inputs_dict = {}
                inputs_dict['x'] = inputs[0]
                inputs_dict['y'] = inputs[1]
S
SunAhong1993 已提交
599 600
                attr = {'act': None, 'name': string(node.layer_name)}
                node.fluid_code.add_layer("elementwise_add",
S
SunAhong1993 已提交
601
                                          inputs=inputs_dict,
S
SunAhong1993 已提交
602 603 604
                                          output=node,
                                          param_attr=attr)
        else:
S
SunAhong1993 已提交
605 606 607
            inputs_dict = {}
            inputs_dict['x'] = inputs[0]
            inputs_dict['y'] = inputs[1]
S
SunAhong1993 已提交
608 609
            attr = {'act': None, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("elementwise_max",
S
SunAhong1993 已提交
610
                                      inputs=inputs_dict,
S
SunAhong1993 已提交
611 612 613 614
                                      output=node,
                                      param_attr=attr)

    def BatchNorm(self, node):
C
channingss 已提交
615 616
        assert len(
            node.inputs) == 1, 'The count of BatchNorm node\'s input is not 1.'
S
SunAhong1993 已提交
617 618
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.batch_norm_param
S
SunAhong1993 已提交
619
        if hasattr(params, 'eps'):
S
SunAhong1993 已提交
620 621 622
            eps = params.eps
        else:
            eps = 1e-5
S
SunAhong1993 已提交
623
        if node.data is None or len(node.data) != 3:
C
channingss 已提交
624 625 626
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
627
            input_c = node.input_shape[0][1]
C
channingss 已提交
628 629 630 631 632 633
            mean = np.zeros([
                input_c,
            ]).astype('float32')
            variance = np.zeros([
                input_c,
            ]).astype('float32')
S
SunAhong1993 已提交
634 635
            scale = 0
        else:
S
SunAhong1993 已提交
636

S
SunAhong1993 已提交
637
            node.data = [np.squeeze(i).astype('float32') for i in node.data]
S
SunAhong1993 已提交
638
            mean, variance, scale = node.data
S
SunAhong1993 已提交
639 640 641 642 643 644
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.weights[node.layer_name + '_mean'] = mean
        self.weights[node.layer_name + '_variance'] = variance
645 646 647 648 649 650 651 652 653
        attr = {
            'is_test': True,
            'param_attr': None,
            'bias_attr': None,
            'moving_mean_name': string(node.layer_name + '_mean'),
            'moving_variance_name': string(node.layer_name + '_variance'),
            'epsilon': eps,
            'name': string(node.layer_name)
        }
S
SunAhong1993 已提交
654 655 656 657 658 659
        node.fluid_code.add_layer("batch_norm",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Scale(self, node):
S
SunAhong1993 已提交
660
        if node.data is None:
C
channingss 已提交
661 662 663
            print(
                'The parameter of {} (type is {}) is not set. So we set the parameters as 0'
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
664
            input_c = node.input_shape[0][1]
C
channingss 已提交
665 666 667 668 669 670
            self.weights[node.layer_name + '_scale'] = np.zeros([
                input_c,
            ]).astype('float32')
            self.weights[node.layer_name + '_offset'] = np.zeros([
                input_c,
            ]).astype('float32')
S
SunAhong1993 已提交
671
        else:
S
SunAhong1993 已提交
672 673 674 675
            self.weights[node.layer_name + '_scale'] = np.squeeze(
                node.data[0]).astype('float32')
            self.weights[node.layer_name + '_offset'] = np.squeeze(
                node.data[1]).astype('float32')
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        params = node.layer.scale_param
        axis = params.axis
        num_axes = params.num_axes
        inputs = []
        if len(node.inputs) == 2:
            # for two tensor, here resets axis to 1. Maybe there is a bug for unkown case.
            axis = 1
            bias_shape = node.input_shape[0][axis:axis + num_axes]
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
            input1 = self.graph.get_bottom_node(node, idx=1, copy=True)
            inputs_dict = {}
            inputs_dict['x'] = input0
            inputs_dict['y'] = input1
            attr = {'axis': axis, 'name': string(node.layer_name + '_mul')}
            node.fluid_code.add_layer("elementwise_mul",
                                      inputs=inputs_dict,
                                      output=node.layer_name + '_mul',
                                      param_attr=attr)
S
SunAhong1993 已提交
694
        else:
695 696
            bias_shape = node.input_shape[0][axis:axis + num_axes]
            input0 = self.graph.get_bottom_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
697 698
            input0_name = self.get_input_name(input0)
            attr = {
699 700 701 702
                'dtype': '{}.dtype'.format(input0_name),
                'shape': bias_shape,
                'name': string(node.layer_name + '_cparam1'),
                'attr': string(node.layer_name + '_scale'),
S
SunAhong1993 已提交
703 704 705 706 707 708 709
                'is_bias': True,
                'default_initializer': 'Constant(value=1.0)'
            }
            node.fluid_code.add_layer("create_parameter",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
            inputs_dict = {}
            inputs_dict['x'] = input0
            inputs_dict['y'] = node
            attr = {'axis': axis, 'name': string(node.layer_name + '_mul')}
            node.fluid_code.add_layer("elementwise_mul",
                                      inputs=inputs_dict,
                                      output=node.layer_name + '_mul',
                                      param_attr=attr)
        scale_shape = bias_shape
        input0_name = self.get_input_name(input0)
        attr = {
            'dtype': '{}.dtype'.format(input0_name),
            'shape': scale_shape,
            'name': string(node.layer_name + '_cparam2'),
            'attr': string(node.layer_name + '_offset'),
            'is_bias': True,
            'default_initializer': 'Constant(value=1.0)'
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node.layer_name + '_offset_param',
                                  param_attr=attr)
        attr = {'axis': axis, 'name': string(node.layer_name + '_add')}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs='{}_mul, {}_offset_param'.format(
                                      node.layer_name, node.layer_name),
                                  output=node,
                                  param_attr=attr)
S
SunAhong1993 已提交
738 739 740 741

    def Reshape(self, node):
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        top_count = len(input.layer.top)
742
        is_inplace = False if top_count == 1 else True
S
SunAhong1993 已提交
743 744 745 746
        output_shape = node.output_shape[0]
        attr = {
            'shape': output_shape,
            'inplace': is_inplace,
747
            'act': None,
S
SunAhong1993 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
            'name': string(node.layer_name)
        }
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, 'The count of ArgMax node\'s input and output is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        input_shape = node.input_shape[0]
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
        axis = parmas.axis if hasattr(params, axis) else -1
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
            attr = {'k': top_k, 'name': string(node.layer_name + '_topk')}
            node.fluid_code.add_layer("topk",
                                      inputs=input,
                                      output='{}_topk_var, {}_index_var'.format(
                                          node.layer_name, node.layer_name),
                                      param_attr=attr)
            attr = {'dtype': '{}_topk_var.dtype'.format(node.layer_name)}
            node.fluid_code.add_layer(
                "cast",
                inputs='{}_index_var'.format(node.layer_name),
                output='{}_index_var'.format(node.layer_name),
                param_attr=attr)
            attr = {'axis': axis, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("concat",
                                      inputs='{}_topk_var, {}_index_var'.format(
                                          node.layer_name, node.layer_name),
                                      output=node,
                                      param_attr=attr)
        else:
            attr = {'k': top_k, 'name': string(node.layer_name)}
            node.fluid_code.add_layer("topk",
                                      inputs=input,
                                      output='_, {}'.format(node.layer_name),
                                      param_attr=attr)

    def Crop(self, node):
        assert len(
            node.inputs) == 2, 'The count of Crop node\'s input is not 2.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        example = self.graph.get_bottom_node(node, idx=1, copy=True)
        params = node.layer.crop_param
        axis = parmas.axis
        input_shape = node.input_shape[0]
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, offset):
            offset = list(params.offset)
            assert (len(input_shape) - axis) == len(
                offset), "invalid offset[%s] in crop layer" % (str(offset))
            offset_real = [0] * axis + offset
        attr = {'offsets': offset_real, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("crop",
                                  inputs={
                                      'x': input,
                                      'y': example
                                  },
                                  output=node,
                                  param_attr=attr)

S
SunAhong1993 已提交
819
    def Flatten(self, node):
S
SunAhong1993 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        assert len(
            node.inputs
        ) == 1, 'The count of DetectionOutput node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        shape = node.output_shape[0]
        attr = {'shape': shape, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Power(self, node):
        assert len(
            node.inputs) == 1, 'The count of Permute node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.power_param
        power = params.power
        scale = params.scale
        shift = params.shift
        attr = {
            'scale': scale,
            'bias': shift,
            'bias_after_scale': True,
            'name': string(node.layer_name + '_scale')
        }
        node.fluid_code.add_layer("scale",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
        attr = {'factor': power, 'name': string(node.layer_name)}
        node.fluid_code.add_layer("pow",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, 'The count of Reduction node\'s input is not 1.'
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
        input_len = len(node.input_shape[0])
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        if operation == 1:  ## operation = SUM
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_sum",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif operation == 2:  ## operation = ASUM
            attr = {'name': string(node.layer_name + '_abs')}
            node.fluid_code.add_layer("abs",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_sum",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        elif operation == 3:  ## operation = SUMSQ
            attr = {'factor': 2.0, 'name': string(node.layer_name + '_pow')}
            node.fluid_code.add_layer("pow",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_sum",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        else:  ## operation = MEAN
            attr = {
                'dim': dim[axis:],
                'keep_dim': False,
                'name': string(node.layer_name)
            }
            node.fluid_code.add_layer("reduce_mean",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
        attr = {'scale': coeff}
        node.fluid_code.add_layer("scale",
                                  inputs=node,
                                  output=node,
                                  param_attr=attr)

S
SunAhong1993 已提交
925 926 927 928 929 930 931 932
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
        kwargs['input_shape'] = node.input_shape
        data = node.data
S
SunAhong1993 已提交
933 934 935 936 937
        if data is not None:
            data = self.adjust_parameters(node)
            weights_name = deal_weights(node)
            for i in range(len(data)):
                self.weights[weights_name[i]] = data[i]
S
SunAhong1993 已提交
938 939 940
        inputs_node = []
        for i in range(len(node.inputs)):
            input = self.graph.get_bottom_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
941 942 943 944 945 946
            if i == 1 and op == 'DetectionOutput':
                input = self.graph.get_bottom_node(node, idx=i, copy=True)
                while input is not None and input.layer_type != 'Softmax':
                    input = self.graph.get_bottom_node(input, idx=0, copy=True)
                assert input is not None, 'This kind of DetectionOutput is not supported!'
                input = self.graph.get_bottom_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
947 948 949 950 951 952
            inputs_node.append(input)
        node.fluid_code.add_layer(func.__code__.co_name,
                                  inputs=inputs_node,
                                  output=node,
                                  param_attr=kwargs,
                                  is_custom_layer=True)
J
jiangjiajun 已提交
953 954
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
S
SunAhong1993 已提交
955 956 957 958 959 960 961 962 963 964

    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_bottom_node(node, idx=0, copy=True)
        attr = {'name': string(node.layer_name)}
        node.fluid_code.add_layer(op_info,
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)