opset.py 52.3 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
47 48 49 50 51 52 53
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
71
class OpSet9():
72 73 74 75 76
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
77 78
        'Pow': 'elementwise_pow',
    }
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
114 115 116 117
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
142
    default_ioa_constraint = {}
143 144

    def __init__(self, decoder):
C
Channingss 已提交
145
        super(OpSet9, self).__init__()
146
        self.graph = decoder.graph
C
update  
channingss 已提交
147 148 149
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
150
        self.used_custom_layers = dict()
R
root 已提交
151

152
    @print_mapping_info
C
channingss 已提交
153
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
154 155 156 157
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
158 159 160
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
161 162 163 164 165 166 167 168
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
169
            fill_name_field, ) = info
C
update  
channingss 已提交
170

171 172
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
173 174 175 176 177 178 179 180 181 182 183 184
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
185
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
186
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
187 188 189 190
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
191 192 193
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
194
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
195
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
196
            attr['name'] = string(node.layer_name)
197 198 199 200 201 202 203 204 205 206
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
207 208 209
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
210
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
211 212 213
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
214 215 216 217 218 219
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
220 221
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
222
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
223 224 225
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
226

227
    @print_mapping_info
228 229 230
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
231

232 233 234 235
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
236 237

        if len(val_x_shape) < len(val_y_shape):
238
            val_x, val_y = val_y, val_x
239
            val_y_shape, val_x_shape = val_x_shape, val_y_shape
240 241 242

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
243
        slice_idx = 0
244 245 246 247 248 249
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
250 251 252 253 254 255 256 257
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
258 259 260 261 262
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_y,
                output=var_y_reshaped,
                param_attr=attr_reshaped)
263
            inputs = {'x': val_x, 'y': var_y_reshaped}
264 265
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
266 267
        else:
            inputs = {'x': val_x, 'y': val_y}
268 269
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
C
channingss 已提交
270

271
    @print_mapping_info
C
update  
channingss 已提交
272
    def place_holder(self, node):
C
channingss 已提交
273
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
274

C
channings 已提交
275 276
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
277 278 279
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
280
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
281 282
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
283
            "shape": shape,
C
update  
channingss 已提交
284 285 286 287
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

288 289
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
290

291
    @print_mapping_info
C
update  
channingss 已提交
292 293 294 295
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
296
        shape = node.out_shapes[0]
C
channingss 已提交
297 298
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
299 300 301 302 303 304 305
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
336
    def _interpolate(self, node):
C
channingss 已提交
337
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
338
        inputs = {'input': val_x}
339
        if node.layer_type == 'Resize':
C
Channingss 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
366 367
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
368
            inputs['scale'] = val_scales
R
root 已提交
369 370

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
371 372
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
373
        if 'linear' in mode:
R
root 已提交
374 375 376
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
377
            fluid_op = 'resize_bilinear'
378
        node.fluid_code.add_layer(
C
Channingss 已提交
379
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
380

381
    @print_mapping_info
C
channings 已提交
382 383 384
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
385 386 387

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
388 389 390
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
391 392 393 394 395
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
396 397 398 399 400 401 402 403
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
404 405 406
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
407

C
channings 已提交
408 409 410
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
411 412 413 414
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
415 416 417 418 419 420 421 422
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
423
    def Pad(self, node, op_independent=True):
C
channingss 已提交
424
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
425 426 427
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
428 429
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
451 452 453 454
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
455 456 457
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
458 459
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
460 461
        else:
            attr['name'] = string(node.layer_name + '_paded')
462 463 464 465 466
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
467 468
            return node.layer_name + '_paded'

469
    @print_mapping_info
C
update  
channingss 已提交
470
    def Unsqueeze(self, node):
C
channingss 已提交
471
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
472
        axes = node.get_attr('axes')
473
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
474
        if len(val_x.out_shapes[0]) == 0:
475 476 477 478 479 480
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
481
        else:
482 483
            node.fluid_code.add_layer(
                'unsqueeze', inputs=val_x, output=node, param_attr=attr)
484

485
    @print_mapping_info
C
channingss 已提交
486
    def Shrink(self, node):
C
channingss 已提交
487
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
488 489 490 491
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
492 493
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
494

495
    @print_mapping_info
C
update  
channingss 已提交
496 497 498 499 500 501 502 503
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
504

C
update  
channingss 已提交
505
        shape = node.get_attr('shape', None)
R
root 已提交
506

C
update  
channingss 已提交
507
        if shape is None:
C
channingss 已提交
508
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
509 510
        if shape is None:
            shape = list(value.shape)
511 512 513 514
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
515
        if len(value) == 1:
C
channingss 已提交
516
            value = value.tolist()
C
update  
channingss 已提交
517 518 519 520 521
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
522 523
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
524
        else:
525 526
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
527 528 529 530 531 532 533 534
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
535 536
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
537

538
    @print_mapping_info
C
update  
channingss 已提交
539
    def Resize(self, node):
540 541
        self._interpolate(node)

542
    @print_mapping_info
543 544 545
    def Upsample(self, node):
        self._interpolate(node)

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
561
    def Expand(self, node):
C
channingss 已提交
562
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
563
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
564 565

        if len(val_shape.outputs) == 1:
566 567
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
568
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
569
        out_shape = node.out_shapes[0]
570
        val_x_dtype = val_x.dtype
R
root 已提交
571 572 573

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
574 575
        node.fluid_code.add_layer(
            'ones', inputs=None, output=name_ones, param_attr=attr_ones)
R
root 已提交
576 577
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
578 579 580 581 582
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
            param_attr=attr)
C
update  
channingss 已提交
583

584
    @print_mapping_info
C
channingss 已提交
585 586 587 588
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
589
        axis = node.get_attr('axis', 0)
590 591
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
592
        if axis == 0 and len(indices_shape) <= 1:
593 594 595 596 597 598
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': val_x,
                        'index': indices},
                output=node,
                param_attr=None)
C
channingss 已提交
599 600
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
601 602 603
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
C
update  
Channingss 已提交
620 621 622 623 624
                node.fluid_code.add_layer(
                    'cast',
                    inputs=indices,
                    output=indices,
                    param_attr={'dtype': string('int64')})
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
                node.fluid_code.add_layer(
                    'embedding',
                    inputs=indices,
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
663
            from functools import reduce
R
root 已提交
664
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
665 666 667 668 669 670
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
671

C
Channingss 已提交
672 673 674
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
C
fix bug  
Channingss 已提交
675
            name_trans = val_x.layer_name + '_transpose'
676 677 678 679 680 681 682 683 684 685 686
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
C
fix bug  
Channingss 已提交
687
            input_transpose = node.layer_name + '_transpose'
688
            node.fluid_code.add_layer(
C
fix bug  
Channingss 已提交
689 690 691 692
                'transpose',
                inputs=node,
                output=input_transpose,
                param_attr=attr_trans)
C
Channingss 已提交
693 694 695 696 697 698
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
699 700
            node.fluid_code.add_layer(
                'reshape',
C
fix bug  
Channingss 已提交
701
                inputs=input_transpose,
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
                output=node,
                param_attr={'shape': reshaped_shape})

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
719
    def Slice(self, node):
C
channingss 已提交
720
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
721
        starts, ends, axes, steps = None, None, None, None
722
        attr = {}
C
channingss 已提交
723 724 725
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
726
            if len(node.inputs) > 3:
C
channings 已提交
727
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
728
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
729
            if len(node.inputs) > 4:
C
channings 已提交
730
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
731
                steps = _const_weight_or_none(steps)
732 733 734 735 736 737 738
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
C
update  
Channingss 已提交
739 740
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
741 742 743 744 745 746 747 748 749 750 751 752 753 754
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
C
fix bug  
Channingss 已提交
755
                    starts_cast = starts.layer_name + '_cast'
756 757 758
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
C
fix bug  
Channingss 已提交
759
                        output=starts_cast,
760
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
761
                    attr['starts'] = starts_cast
762
                if ends.dtype != 'int32':
C
fix bug  
Channingss 已提交
763
                    ends_cast = ens.layer_name + '_cast'
764 765 766
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
C
fix bug  
Channingss 已提交
767
                        output=ends_cast,
768
                        param_attr={'dtype': string('int32')})
C
fix bug  
Channingss 已提交
769
                    attr['ends'] = ends_cast
C
channingss 已提交
770 771 772 773
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
774 775 776 777
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
778

779 780
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
781

782
    @print_mapping_info
C
update  
channingss 已提交
783
    def ConstantOfShape(self, node):
C
channingss 已提交
784
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
785
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
786 787 788 789

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
790 791
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
792 793 794 795
        if len(value) == 1:
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
796 797 798 799 800 801 802
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
803

804
    @print_mapping_info
C
update  
channingss 已提交
805
    def Split(self, node):
C
channingss 已提交
806 807
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
808 809

        fluid_op = 'split'
C
channingss 已提交
810
        split = node.get_attr('split')
C
update  
channingss 已提交
811
        axis = node.get_attr('axis', 0)
C
channingss 已提交
812 813 814 815 816
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
817

818 819
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
820

821
    @print_mapping_info
C
update  
channingss 已提交
822
    def Reshape(self, node):
C
channingss 已提交
823 824
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
825
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
843 844 845 846 847 848 849
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
850 851 852 853 854 855 856
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
857 858 859 860 861 862 863
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
864 865 866 867 868 869 870 871
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
872
    def Cast(self, node):
C
channingss 已提交
873
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
874 875 876 877 878 879 880 881 882 883
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
884 885
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
886

887
    @print_mapping_info
C
update  
channingss 已提交
888
    def AveragePool(self, node):
C
channingss 已提交
889
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
890 891

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
892 893 894 895 896 897 898 899
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
900

C
channingss 已提交
901 902
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
903
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
904
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
905 906 907 908 909
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
910

C
update  
channingss 已提交
911 912 913 914 915 916 917 918 919 920
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

921 922
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
923

924
    @print_mapping_info
C
update  
channingss 已提交
925 926 927
    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
928
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
929 930 931 932 933 934
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
935 936
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
937

938
    @print_mapping_info
C
update  
channingss 已提交
939
    def Flatten(self, node):
C
channingss 已提交
940
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
941 942
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
943 944
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
945

946
    @print_mapping_info
C
update  
channingss 已提交
947
    def Gemm(self, node):
C
channingss 已提交
948 949 950
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
964 965 966 967 968
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
969

C
update  
channingss 已提交
970 971 972 973
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
974 975 976 977 978
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
979
            else:
C
channingss 已提交
980 981
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
982 983 984 985 986
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
987 988 989

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
990 991 992 993 994
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
995

996
    @print_mapping_info
C
update  
channingss 已提交
997
    def Sum(self, node):
998
        val_inps = node.layer.input
999
        inputs = {
1000 1001 1002 1003
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1004 1005
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1006

C
channingss 已提交
1007 1008
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1009 1010
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1011
                "y": y,
1012
            }
1013 1014
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1015

1016
    @print_mapping_info
C
update  
channingss 已提交
1017
    def MatMul(self, node):
C
channingss 已提交
1018 1019
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1020 1021
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
1022 1023
        node.fluid_code.add_layer(
            "matmul", inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1024

1025
    @print_mapping_info
C
update  
channingss 已提交
1026
    def BatchNormalization(self, node):
C
channingss 已提交
1027 1028 1029 1030 1031
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1041 1042
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1043 1044 1045 1046
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1047
            "is_test": True,
C
update  
channingss 已提交
1048 1049 1050 1051
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1052
            "use_global_stats": spatial,
C
update  
channingss 已提交
1053 1054
            "name": string(node.layer_name)
        }
1055 1056
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1057

1058
    @print_mapping_info
C
update  
channingss 已提交
1059
    def Transpose(self, node):
C
channingss 已提交
1060
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1061 1062
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1063 1064
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1065

1066
    @print_mapping_info
C
update  
channingss 已提交
1067
    def Relu(self, node):
C
channingss 已提交
1068
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1069
        attr = {"name": string(node.layer_name)}
1070 1071
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1072

1073
    @print_mapping_info
C
update  
channingss 已提交
1074
    def PRelu(self, node):
C
channingss 已提交
1075 1076
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1077

C
channingss 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1088 1089
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1090

1091
    @print_mapping_info
C
update  
channingss 已提交
1092
    def Squeeze(self, node):
C
channingss 已提交
1093 1094 1095
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1096 1097 1098 1099 1100 1101 1102 1103 1104
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1105

1106
    @print_mapping_info
C
channings 已提交
1107 1108 1109
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1110 1111 1112 1113 1114 1115 1116
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1128
    @print_mapping_info
C
channings 已提交
1129 1130 1131 1132
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1133

C
channings 已提交
1134
        not_condition = condition.layer_name + '_not'
1135 1136 1137 1138 1139
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1140
        cast_not_condition = not_condition + '_cast'
1141 1142 1143 1144 1145
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1146
        cast_condition = condition.layer_name + '_cast'
1147 1148 1149 1150 1151
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1152
        mul_val_x = val_x.layer_name + '_mul'
1153 1154 1155 1156 1157 1158
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
C
channings 已提交
1159
        mul_val_y = val_y.layer_name + '_mul'
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1175 1176
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1196
    def Identity(self, node):
C
channingss 已提交
1197
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1198
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1199

1200
    @print_mapping_info
C
channings 已提交
1201 1202 1203 1204
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1205

1206 1207 1208
        if repeats is None:
            repeats = val_repeats.layer_name
        elif isinstance(repeats, int):
C
channings 已提交
1209
            repeats = [repeats]
R
root 已提交
1210

C
channings 已提交
1211
        attr = {
R
root 已提交
1212
            'expand_times': repeats,
C
channings 已提交
1213 1214
            "name": string(node.layer_name),
        }
1215 1216
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1217

1218
    @print_mapping_info
C
update  
channingss 已提交
1219
    def MaxPool(self, node):
C
channingss 已提交
1220
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1221
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1233

C
channingss 已提交
1234 1235
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1236
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1237
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1238 1239 1240 1241 1242
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1243

C
update  
channingss 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1253 1254
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1255

C
channings 已提交
1256
    def _global_pool(self, node):
C
channingss 已提交
1257
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1258
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1259
        fluid_op = 'pool2d'
C
channings 已提交
1260 1261 1262 1263 1264 1265
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1266
        attr = {
C
channings 已提交
1267
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1268 1269 1270
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1271 1272
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1273

1274
    @print_mapping_info
C
channings 已提交
1275 1276
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1277

1278
    @print_mapping_info
C
channings 已提交
1279 1280
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1281

1282
    @print_mapping_info
C
update  
channingss 已提交
1283
    def Conv(self, node):
C
channingss 已提交
1284 1285
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1286 1287 1288 1289 1290 1291
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1292
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1293 1294 1295
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1296
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1297 1298
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1299
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1300 1301 1302
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1303 1304 1305
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1306

C
channingss 已提交
1307
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1308 1309
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1310
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1311 1312 1313 1314 1315
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1331 1332
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1333

1334
    @print_mapping_info
C
channingss 已提交
1335
    def ConvTranspose(self, node):
C
channingss 已提交
1336 1337
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1338
        val_b = None
R
root 已提交
1339
        if len(node.layer.input) > 2:
C
channingss 已提交
1340 1341
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1342 1343 1344 1345 1346 1347
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1348
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1349 1350 1351
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1352
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1353 1354
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1355 1356 1357 1358 1359
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1360 1361 1362 1363

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1364

1365 1366
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1367
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1368 1369
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1380
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1381 1382
            'name': string(node.layer_name),
        }
1383 1384
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)