opset9.py 56.5 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from functools import reduce
C
update  
channingss 已提交
21
import numpy as np
C
channingss 已提交
22
import onnx
C
channingss 已提交
23
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
24
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
25
import logging as _logging
26
from collections import OrderedDict
C
channingss 已提交
27
import math
C
channingss 已提交
28 29
import os
import shutil
30

C
update  
channingss 已提交
31 32 33 34
_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
C
channings 已提交
35
    if 'Constant' in node.layer_type:
C
channingss 已提交
36
        return node.value
C
update  
channingss 已提交
37 38 39 40 41
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
42 43 44 45 46 47 48 49
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
67
class OpSet9():
68 69 70 71 72
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
73 74
        'Pow': 'elementwise_pow',
    }
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

    default_ioa_constraint = {
        'Gather':
        [(lambda i, o, a: a.get('axis', 0) == 0, 'only axis = 0 is supported')],
    }

    def __init__(self, decoder):
C
Channingss 已提交
140
        super(OpSet9, self).__init__()
141
        self.graph = decoder.graph
C
update  
channingss 已提交
142 143 144
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
145
        self.used_custom_layers = dict()
R
root 已提交
146

147
    @print_mapping_info
C
channingss 已提交
148
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
149 150 151 152
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
153 154 155
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
156 157 158 159 160 161 162 163
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
164
            fill_name_field, ) = info
C
update  
channingss 已提交
165

166 167
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
168 169 170 171 172 173 174 175 176 177 178 179
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
180
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
181
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
182 183 184 185
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
186 187 188
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
189
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
190
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
191
            attr['name'] = string(node.layer_name)
192 193 194 195 196 197 198 199 200 201
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
202 203 204
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
205
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
206 207 208
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
209 210 211 212 213 214
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
215 216
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
217
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
218 219 220
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
221

222
    @print_mapping_info
223 224 225
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
226

227 228 229 230
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
231 232

        if len(val_x_shape) < len(val_y_shape):
233
            val_x, val_y = val_y, val_x
234
            val_y_shape, val_x_shape = val_x_shape, val_y_shape
235 236 237

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
238
        slice_idx = 0
239 240 241 242 243 244
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
245 246 247 248 249 250 251 252
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
253 254 255 256 257
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_y,
                output=var_y_reshaped,
                param_attr=attr_reshaped)
258
            inputs = {'x': val_x, 'y': var_y_reshaped}
259 260
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
261 262
        else:
            inputs = {'x': val_x, 'y': val_y}
263 264
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
C
channingss 已提交
265

266
    @print_mapping_info
C
update  
channingss 已提交
267
    def place_holder(self, node):
C
channingss 已提交
268
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
269

C
channings 已提交
270 271
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
272 273 274
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
275
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
276 277
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
278
            "shape": shape,
C
update  
channingss 已提交
279 280 281 282
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

283 284
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
285

286
    @print_mapping_info
C
update  
channingss 已提交
287 288 289 290
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
291
        shape = node.out_shapes[0]
C
channingss 已提交
292 293
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
294 295 296 297 298 299 300
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
331
    def _interpolate(self, node):
C
channingss 已提交
332
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
333 334 335 336
        if node.layer_type == 'Resize':
            val_scales = self.graph.get_input_node(node, idx=2, copy=True)
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
337 338

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
339 340
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
341
        if 'linear' in mode:
R
root 已提交
342 343 344
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
345
            fluid_op = 'resize_bilinear'
R
root 已提交
346

347 348 349 350 351 352
        node.fluid_code.add_layer(
            fluid_op,
            inputs={'input': val_x,
                    'scale': val_scales},
            output=node,
            param_attr=attr)
R
root 已提交
353

354
    @print_mapping_info
C
channings 已提交
355 356 357
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
358 359 360

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
361 362 363
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
364 365 366 367 368
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
369 370 371 372 373 374 375 376
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
377 378 379
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
380

C
channings 已提交
381 382 383
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
384 385 386 387
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
388 389 390 391 392 393 394 395
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
396
    def Pad(self, node, op_independent=True):
C
channingss 已提交
397
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
398 399 400
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
401 402
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
424 425 426 427
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
428 429 430
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
431 432
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
433 434
        else:
            attr['name'] = string(node.layer_name + '_paded')
435 436 437 438 439
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
440 441
            return node.layer_name + '_paded'

442
    @print_mapping_info
C
update  
channingss 已提交
443
    def Unsqueeze(self, node):
C
channingss 已提交
444
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
445
        axes = node.get_attr('axes')
446
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
447
        if len(val_x.out_shapes[0]) == 0:
448 449 450 451 452 453
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
454
        else:
455 456
            node.fluid_code.add_layer(
                'unsqueeze', inputs=val_x, output=node, param_attr=attr)
457

458
    @print_mapping_info
C
channingss 已提交
459
    def Shrink(self, node):
C
channingss 已提交
460
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
461 462 463 464
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
465 466
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
467

468 469 470 471 472 473 474 475 476 477 478
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            'greater_than',
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
C
update  
channingss 已提交
479 480 481 482 483 484 485 486
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
487

C
update  
channingss 已提交
488
        shape = node.get_attr('shape', None)
R
root 已提交
489

C
update  
channingss 已提交
490
        if shape is None:
C
channingss 已提交
491
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
492 493
        if shape is None:
            shape = list(value.shape)
494 495 496 497
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
C
update  
channingss 已提交
498

499
        if len(value) == 1:
C
channingss 已提交
500
            value = value.tolist()
C
update  
channingss 已提交
501 502 503 504 505
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
506 507
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
508
        else:
509 510
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
511 512 513 514 515 516 517 518
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
519 520
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
521

522
    @print_mapping_info
C
update  
channingss 已提交
523
    def Resize(self, node):
524 525
        self._interpolate(node)

526
    @print_mapping_info
527 528 529
    def Upsample(self, node):
        self._interpolate(node)

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
545
    def Expand(self, node):
C
channingss 已提交
546
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
547
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
548 549

        if len(val_shape.outputs) == 1:
550 551
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
552
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
553
        out_shape = node.out_shapes[0]
554
        val_x_dtype = val_x.dtype
R
root 已提交
555 556 557

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
558 559
        node.fluid_code.add_layer(
            'ones', inputs=None, output=name_ones, param_attr=attr_ones)
R
root 已提交
560 561
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
562 563 564 565 566
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
            param_attr=attr)
C
update  
channingss 已提交
567

568
    @print_mapping_info
C
channingss 已提交
569 570 571 572
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
573
        axis = node.get_attr('axis', 0)
574 575
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
576
        if axis == 0 and len(indices_shape) <= 1:
577 578 579 580 581 582
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': val_x,
                        'index': indices},
                output=node,
                param_attr=None)
C
channingss 已提交
583 584
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
585 586 587
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
                node.fluid_code.add_layer(
                    'embedding',
                    inputs=indices,
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                #indices_shape = [1,7]
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
643
            from functools import reduce
R
root 已提交
644
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
645 646 647 648 649 650
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
651

C
Channingss 已提交
652 653 654 655
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
656 657 658 659 660 661 662 663 664 665 666 667 668
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
669 670 671 672 673 674
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
            node.fluid_code.add_layer(
                'reshape',
                inputs=node,
                output=node,
                param_attr={'shape': reshaped_shape})

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
695
    def Slice(self, node):
C
channingss 已提交
696
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
697
        starts, ends, axes, steps = None, None, None, None
698
        attr = {}
C
channingss 已提交
699 700 701
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
702
            if len(node.inputs) > 3:
C
channings 已提交
703 704
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes)
R
root 已提交
705
            if len(node.inputs) > 4:
C
channings 已提交
706 707
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                steps = _const_weight_or_none(steps)
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
                        output=starts,
                        param_attr={'dtype': string('int32')})
                if ends.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
                        output=ends,
                        param_attr={'dtype': string('int32')})
C
channingss 已提交
742 743 744 745
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
746 747 748 749
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
750

751 752
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
753

754
    @print_mapping_info
C
update  
channingss 已提交
755
    def ConstantOfShape(self, node):
C
channingss 已提交
756
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
757
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
758 759 760 761

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
762 763
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
764 765 766 767
        if len(value) == 1:
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
768 769 770 771 772 773 774
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
775

776
    @print_mapping_info
C
update  
channingss 已提交
777
    def Split(self, node):
C
channingss 已提交
778 779
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
780 781

        fluid_op = 'split'
C
channingss 已提交
782
        split = node.get_attr('split')
C
update  
channingss 已提交
783
        axis = node.get_attr('axis', 0)
C
channingss 已提交
784 785 786 787 788
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
789

790 791
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
792

793
    @print_mapping_info
C
update  
channingss 已提交
794
    def Reshape(self, node):
C
channingss 已提交
795 796
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
797
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_shape_cast,
                output=val_shape_cast,
                param_attr={'shape': val_shape.out_shapes[0]})
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_shape,
                output=val_shape,
                param_attr={'shape': val_shape.out_shapes[0]})
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
840
    def Cast(self, node):
C
channingss 已提交
841
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
842 843 844 845 846 847 848 849 850 851
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
852 853
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
854

855
    @print_mapping_info
C
update  
channingss 已提交
856
    def AveragePool(self, node):
C
channingss 已提交
857
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
858 859

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
860 861 862 863 864 865 866 867
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
868

C
channingss 已提交
869 870
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
871
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
872
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
873 874 875 876 877 878
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
879 880 881 882 883 884 885 886 887 888
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

889 890
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
891

892
    @print_mapping_info
C
update  
channingss 已提交
893 894 895
    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
896
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
897 898 899 900 901 902
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
903 904
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
905

906
    @print_mapping_info
C
update  
channingss 已提交
907
    def Flatten(self, node):
C
channingss 已提交
908
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
909 910
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
911 912
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
913

914
    @print_mapping_info
C
update  
channingss 已提交
915
    def Gemm(self, node):
C
channingss 已提交
916 917 918
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
932 933 934 935 936
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
937

C
update  
channingss 已提交
938 939 940 941
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
942 943 944 945 946
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
947
            else:
C
channingss 已提交
948 949
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
950 951 952 953 954
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
955 956 957

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
958 959 960 961 962
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
963

964
    @print_mapping_info
C
update  
channingss 已提交
965
    def Sum(self, node):
966
        val_inps = node.layer.input
967
        inputs = {
968 969 970 971
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
972 973
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
974

C
channingss 已提交
975 976
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
977 978
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
979
                "y": y,
980
            }
981 982
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
983

984
    @print_mapping_info
C
update  
channingss 已提交
985
    def MatMul(self, node):
C
channingss 已提交
986 987
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
988 989
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
990 991
        node.fluid_code.add_layer(
            "matmul", inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
992

993
    @print_mapping_info
C
update  
channingss 已提交
994
    def BatchNormalization(self, node):
C
channingss 已提交
995 996 997 998 999
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1009 1010
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1011 1012 1013 1014
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1015
            "is_test": True,
C
update  
channingss 已提交
1016 1017 1018 1019
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1020
            "use_global_stats": spatial,
C
update  
channingss 已提交
1021 1022
            "name": string(node.layer_name)
        }
1023 1024
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1025

1026
    @print_mapping_info
C
update  
channingss 已提交
1027
    def Transpose(self, node):
C
channingss 已提交
1028
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1029 1030
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1031 1032
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1033

1034
    @print_mapping_info
C
update  
channingss 已提交
1035
    def Relu(self, node):
C
channingss 已提交
1036
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1037
        attr = {"name": string(node.layer_name)}
1038 1039
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1040

1041
    @print_mapping_info
C
update  
channingss 已提交
1042
    def PRelu(self, node):
C
channingss 已提交
1043 1044
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1045

C
channingss 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1056 1057
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1058

1059
    @print_mapping_info
C
update  
channingss 已提交
1060
    def Squeeze(self, node):
C
channingss 已提交
1061 1062 1063
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1064 1065 1066 1067 1068 1069 1070 1071 1072
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1073

1074
    @print_mapping_info
C
channings 已提交
1075 1076 1077
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1078 1079 1080 1081 1082 1083 1084 1085
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
C
channings 已提交
1086 1087 1088 1089
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1090

C
channings 已提交
1091
        not_condition = condition.layer_name + '_not'
1092 1093 1094 1095 1096
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1097
        cast_not_condition = not_condition + '_cast'
1098 1099 1100 1101 1102
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1103
        cast_condition = condition.layer_name + '_cast'
1104 1105 1106 1107 1108
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1109
        mul_val_x = val_x.layer_name + '_mul'
1110 1111 1112 1113 1114 1115
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
R
root 已提交
1116

C
channings 已提交
1117
        mul_val_y = val_y.layer_name + '_mul'
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1133 1134
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        val_x_dim = len(val_x.out_shapes[0])
        print(val_x.layer_name, val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1155
    def Identity(self, node):
C
channingss 已提交
1156
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1157
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1158

1159
    @print_mapping_info
C
channings 已提交
1160 1161 1162 1163
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1164

1165 1166 1167
        if repeats is None:
            repeats = val_repeats.layer_name
        elif isinstance(repeats, int):
C
channings 已提交
1168
            repeats = [repeats]
R
root 已提交
1169

C
channings 已提交
1170
        attr = {
R
root 已提交
1171
            'expand_times': repeats,
C
channings 已提交
1172 1173
            "name": string(node.layer_name),
        }
1174 1175
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1176

1177
    @print_mapping_info
C
update  
channingss 已提交
1178
    def MaxPool(self, node):
C
channingss 已提交
1179
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1180
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1192

C
channingss 已提交
1193 1194
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1195
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1196
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1197 1198 1199 1200 1201 1202
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1212 1213
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1214

C
channings 已提交
1215
    def _global_pool(self, node):
C
channingss 已提交
1216
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1217
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1218
        fluid_op = 'pool2d'
C
channings 已提交
1219 1220 1221 1222 1223 1224
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1225
        attr = {
C
channings 已提交
1226
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1227 1228 1229
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1230 1231
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1232

1233
    @print_mapping_info
C
channings 已提交
1234 1235
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1236

1237
    @print_mapping_info
C
channings 已提交
1238 1239
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1240

1241
    @print_mapping_info
C
update  
channingss 已提交
1242
    def Conv(self, node):
C
channingss 已提交
1243 1244
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1245 1246 1247 1248 1249 1250
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1251
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1252 1253 1254
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1255
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1256 1257
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1258
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1259 1260 1261 1262 1263 1264 1265
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1266
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1267 1268
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1269
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1290 1291
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1292

1293
    @print_mapping_info
C
channingss 已提交
1294
    def ConvTranspose(self, node):
C
channingss 已提交
1295 1296
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1297
        val_b = None
R
root 已提交
1298
        if len(node.layer.input) > 2:
C
channingss 已提交
1299 1300
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1301 1302 1303 1304 1305 1306
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1307
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1308 1309 1310
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1311
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1312 1313
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1314 1315 1316 1317 1318
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1319 1320 1321 1322

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1323

1324 1325
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1326
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1327 1328
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1339
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1340 1341
            'name': string(node.layer_name),
        }
1342 1343
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channings 已提交
1344

1345
    @print_mapping_info
C
channings 已提交
1346 1347 1348 1349
    def GRU(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_r = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1350

C
channings 已提交
1351 1352 1353 1354 1355
        val_b = None
        val_len = None
        val_xh = None
        miss_arg_num = 0
        num_ipt = len(node.layer.input)
R
root 已提交
1356
        if num_ipt > 3 and node.layer.input[3] != '':
C
channings 已提交
1357 1358 1359
            val_b = self.graph.get_input_node(node, idx=3, copy=True)
        else:
            miss_arg_num += 1
R
root 已提交
1360
        if num_ipt > 4 and node.layer.input[4] != '':
1361 1362
            val_len = self.graph.get_input_node(
                node, idx=4 - miss_arg_num, copy=True)
C
channings 已提交
1363 1364
        else:
            miss_arg_num += 1
R
root 已提交
1365
        if num_ipt > 5 and node.layer.input[5] != '':
1366 1367
            val_xh = self.graph.get_input_node(
                node, idx=5 - miss_arg_num, copy=True)
R
root 已提交
1368

C
channings 已提交
1369
        x_shape = val_x.out_shapes[0]
R
root 已提交
1370

C
channings 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
        assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
        assert node.get_attr('clip', None) is None, 'clipping not supported'

        hidden_size = node.get_attr('hidden_size', None)
        if hidden_size is None:
            r_shape = val_r.out_shapes[0]
            if r_shape:
                hidden_size = r_shape[-1]
        if hidden_size is None:
            w_shape = var_w.out_shapes[0]
            if w_shape:
                hidden_size = w_shape[-2] // 3
        if hidden_size is None and val_b:
            b_shape = val_b.out_shapes[0]
            if b_shape:
                hidden_size = b_shape[-1] // 6
        if hidden_size is None and val_xh:
            xh_shape = val_xh.out_shapes[0]
            if xh_shape:
                hidden_size = xh_shape[-1]
R
root 已提交
1391 1392

        direction = node.get_attr('direction', 'forward')
C
channings 已提交
1393
        assert direction != 'bidirectional', 'direction = bidirectional not supported'
R
root 已提交
1394

C
channings 已提交
1395 1396
        activations = node.get_attr('activations', ['Sigmoid', 'Tanh'])
        assert len(activations) == 2, 'bidirectional operation not supported'
R
root 已提交
1397 1398 1399 1400

        assert node.get_attr('linear_before_reset',
                             0) == 0, 'only linear_before_reset = 0 supported'

C
channings 已提交
1401 1402 1403
        activations = [s.lower() for s in activations]
        gate_activation, candidate_activation = activations
        is_reverse = direction == 'reverse'
R
root 已提交
1404

C
channings 已提交
1405
        var_x0 = node.layer_name + '_x0'
1406 1407 1408 1409 1410 1411
        node.fluid_code.add_layer(
            'squeeze',
            inputs=val_x,
            output=var_x0,
            param_attr={'axes': [1],
                        'name': string(var_x0)})
R
root 已提交
1412

C
channings 已提交
1413
        var_w0 = node.layer_name + '_w0'
1414 1415 1416 1417 1418 1419
        node.fluid_code.add_layer(
            'squeeze',
            inputs=val_w,
            output=var_w0,
            param_attr={'axes': [0],
                        'name': string(var_w0)})
R
root 已提交
1420

C
channings 已提交
1421 1422
        var_fc = node.layer_name + '_fc'
        var_mm = (node.layer_name + '_mm') if val_b else var_fc
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        node.fluid_code.add_layer(
            'matmul',
            inputs={'x': var_x0,
                    'y': var_w0},
            output=var_mm,
            param_attr={
                'transpose_x': 0,
                'transpose_y': 1,
                'name': string(var_mm)
            })
R
root 已提交
1433

C
channings 已提交
1434
        var_r0 = node.layer_name + '_r0'
1435 1436 1437 1438 1439 1440
        node.fluid_code.add_layer(
            'squeeze',
            inputs=val_r,
            output=var_r0,
            param_attr={'axes': [0],
                        'name': string(var_r0)})
R
root 已提交
1441 1442 1443

        var_r0t = node.layer_name + '_r0t'

1444 1445 1446 1447 1448 1449
        node.fluid_code.add_layer(
            'transpose',
            inputs=var_r0,
            output=var_r0t,
            param_attr={'perm': [1, 0],
                        'name': string(var_r0t)})
C
channings 已提交
1450 1451 1452
        if val_b:
            var_bi = node.layer_name + '_bi'
            var_bh = node.layer_name + '_bh'
1453 1454 1455 1456 1457 1458 1459 1460 1461
            node.fluid_code.add_layer(
                'split',
                inputs=val_b,
                output=var_bi + ',' + var_bh,
                param_attr={
                    'axis': 1,
                    'split': [hidden_size * 3, hidden_size * 3],
                    'name': string(node.layer_name + '.b/split')
                })
C
channings 已提交
1462
            var_bi0 = node.layer_name + '_bi0'
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
            node.fluid_code.add_layer(
                'squeeze',
                inputs=var_bi,
                output=var_bi0,
                param_attr={'axes': [0],
                            'name': string(var_bi0)})

            node.fluid_code.add_layer(
                'elmentwise_add',
                inputs=[var_mm, var_bi0],
                output=var_fc,
                param_attr={
                    'axes': 1,
                    'name': string(node.layer_name + '.i/bias')
                })
C
channings 已提交
1478 1479 1480

        if val_xh:
            var_xh0 = node.layer_name + '_xh0'
1481 1482 1483 1484 1485 1486
            node.fluid_code.add_layer(
                'squeeze',
                inputs=val_xh,
                output=var_xh0,
                param_attr={'axes': [1],
                            'name': string(var_xh0)})
C
channings 已提交
1487
        var_y00 = node.layer_name + '_y00'
R
root 已提交
1488 1489 1490

        attr = {
            'origin_mode': True,
C
channings 已提交
1491
            'h_0': var_xh0 if val_xh else None,
R
root 已提交
1492 1493 1494 1495 1496
            'is_reverse': is_reverse,
            'gate_activation': string(gate_activation),
            'candidate_activation': string(candidate_activation),
            'param_attr': string(var_r0t),
            'bias_attr': string(var_bh) if val_b else False,
C
channings 已提交
1497
        }
1498 1499 1500 1501 1502
        node.fluid_code.add_layer(
            'dynamic_gru',
            inputs=var_fc + ',' + str(hidden_size),
            output=var_y00,
            param_attr=attr)
R
root 已提交
1503

C
channings 已提交
1504
        num_opt = len(node.layer.output)
R
root 已提交
1505 1506

        if num_opt > 0 and node.layer.output[0] != '':
1507 1508 1509 1510 1511 1512 1513 1514
            node.fluid_code.add_layer(
                'unsqueeze',
                inputs=var_y00,
                output=node.layer.output[0],
                param_attr={
                    'axes': [1, 1],
                    'name': string(node.layer.output[0])
                })
R
root 已提交
1515
        if num_opt > 1 and node.layer.output[1] != '':
1516 1517 1518 1519 1520 1521 1522 1523
            node.fluid_code.add_layer(
                'unsqueeze',
                inputs=var_y00,
                output=node.layer.output[1],
                param_attr={
                    'axes': [1, 1],
                    'name': string(node.layer.output[1])
                })