tf_decoder.py 20.3 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode, self).__init__(
                layer,
                layer.name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode, self).__init__(
                layer,
                layer_name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

J
jiangjiajun 已提交
41 42 43 44 45 46 47
        self.dtype_map = {
            1: "float32",
            3: "int32",
            4: "uint8",
            9: "int64",
            10: "bool"
        }
48 49 50

    @property
    def out_shapes(self):
M
mamingjie-China 已提交
51
        if self.layer_type == "OneShotIterator" or self.layer_type == "IteratorV2":
J
jiangjiajun@baidu.com 已提交
52 53 54
            values = self.layer.attr["output_shapes"].list.shape
        else:
            values = self.layer.attr["_output_shapes"].list.shape
55 56 57 58 59 60 61 62
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
63
        keys = ['dtype', 'Tidx', 'T', 'DstT']
64 65 66 67
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
J
jiangjiajun@baidu.com 已提交
68 69
        if dtype == 0:
            dtype = self.layer.attr['output_types'].list.type[0]
70
        if dtype not in self.dtype_map:
M
mamingjie-China 已提交
71 72
            raise Exception("Dtype[{}] of node({}) not in dtype_map".format(
                dtype, self.layer.name))
73 74
        return self.dtype_map[dtype]

J
jiangjiajun 已提交
75 76 77 78 79 80 81 82 83
    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

J
jiangjiajun 已提交
84 85 86 87 88 89 90 91
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
92 93 94 95 96 97 98 99 100 101
    @property
    def name(self):
        multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
        if self.layer_type in multi_out_ops:
            if self.layer_name.count(':') > 0:
                return self.layer_name.replace(':', '_p')
            else:
                return "{}_p0".format(self.layer_name)
        return self.layer_name

J
jiangjiajun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
123 124

class TFGraph(Graph):
J
jiangjiajun 已提交
125
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
126
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
127
        self.identity_map = dict()
M
mamingjie-China 已提交
128
        self.multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
J
jiangjiajun 已提交
129
        self.tf_data_format = data_format
J
jiangjiajun 已提交
130 131 132

    def build(self):
        for layer in self.model.node:
M
mamingjie-China 已提交
133 134
            if layer.op == 'Assert':
                continue
J
jiangjiajun 已提交
135
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
136 137
                '-', '_')] = TFGraphNode(
                    layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
138

J
jiangjiajun 已提交
139
        for layer_name, node in self.node_map.items():
M
mamingjie-China 已提交
140 141
            if node.layer_type == 'Const':
                continue
J
jiangjiajun 已提交
142
            for in_node in node.layer.input:
J
jiangjiajun 已提交
143 144
                in_node = in_node.replace('/', '_').replace('-', '_').replace(
                    '^', '')
J
jiangjiajun 已提交
145 146
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
147
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
148
                    else:
149 150 151
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
152 153 154
                else:
                    self.connect(in_node, layer_name)

155
        super(TFGraph, self).build()
J
jiangjiajun 已提交
156

M
mamingjie-China 已提交
157 158 159 160 161 162 163 164
        for layer in self.model.node:
            if layer.op == 'Assert':
                for ipt in layer.input:
                    ipt_name = ipt.replace('-', '_').replace('/', '_')
                    if ipt_name in self.output_nodes:
                        idx = self.output_nodes.index(ipt_name)
                        del self.output_nodes[idx]

J
jiangjiajun 已提交
165 166
        # tensorflow graph optimize
        self._remove_isolated_node()
J
jiangjiajun@baidu.com 已提交
167
        self._optimize_dialiation_conv()
J
jiangjiajun 已提交
168
        self._remove_identity_node()
J
jiangjiajun 已提交
169
        self._remove_cast_node()
J
jiangjiajun 已提交
170 171 172

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
173
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
174 175 176
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
177
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
178 179
        if node is None:
            return None
J
jiangjiajun 已提交
180 181 182
        if node.layer_type == "Switch":
            if hasattr(node, 'index'):
                del node.index
J
jiangjiajun 已提交
183 184 185
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
J
jiangjiajun 已提交
186

J
jiangjiajun 已提交
187 188 189 190 191
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
192
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun@baidu.com 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    def _optimize_dialiation_conv(self):
        for name in list(self.node_map.keys()):
            node = self.node_map[name]
            if node.layer_type == "SpaceToBatchND":
                is_dilation = True
                out_node0 = self.node_map[node.outputs[0]]
                if out_node0.layer_type != 'ExpandDims':
                    is_dilation = False
                    continue
                out_node1 = self.node_map[out_node0.outputs[0]]
                if out_node1.layer_type != 'Conv2D':
                    is_dilation = False
                    continue
                out_node2 = self.node_map[out_node1.outputs[0]]
                if out_node2.layer_type != 'Squeeze':
                    is_dilation = False
                    continue
                out_node3 = self.node_map[out_node2.outputs[0]]
                if out_node3.layer_type != 'BatchToSpaceND':
                    is_dilation = False
                    continue

                if is_dilation:
                    node.skip = True
                    out_node3.skip = True
                    block_shape = self.node_map[node.inputs[1]]
                    out_node1.dilation = block_shape.value.tolist()

J
jiangjiajun 已提交
235 236 237 238
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
239
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
240 241 242
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
243
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
244 245 246 247 248 249 250 251 252
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
253 254

    def _remove_identity_node(self):
J
jiangjiajun 已提交
255 256
        identity_ops = [
            'Identity', 'StopGradient', 'Switch', 'Merge',
J
jiangjiajun@baidu.com 已提交
257
            'PlaceholderWithDefault', 'IteratorGetNext'
J
jiangjiajun 已提交
258
        ]
J
jiangjiajun 已提交
259 260
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
261
            if node.layer_type in identity_ops:
J
jiangjiajun 已提交
262 263 264 265 266
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
267
            self.remove_node(node_name)
J
jiangjiajun 已提交
268 269 270

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
271 272 273 274
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
296 297 298 299 300 301 302 303 304 305
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
306

J
jiangjiajun 已提交
307
class TFDecoder(object):
308
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
309 310 311 312
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
J
jiangjiajun 已提交
313
        self.input_info = dict()
314
        self.define_input_shape = define_input_shape
315 316 317 318 319
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
320
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
321
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
322
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
323
            self.sess.graph.as_default()
J
jiangjiajun 已提交
324
            tf.import_graph_def(graph_def, name='', input_map=input_map)
325

326 327 328 329 330
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
331

J
jiangjiajun 已提交
332
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
333
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
334
        self.tf_graph.build()
J
jiangjiajun 已提交
335 336 337 338 339 340

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
341 342

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
343
        numpy.random.seed(13)
J
jiangjiajun 已提交
344 345 346
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
M
mamingjie-China 已提交
347
            if layer.op != "Placeholder" and layer.op != "OneShotIterator" and layer.op != "IteratorV2":
J
jiangjiajun 已提交
348 349
                continue
            graph_node = TFGraphNode(layer)
350
            dtype = graph_node.layer.attr['dtype'].type
J
jiangjiajun 已提交
351 352

            need_define_shape = 0
353 354 355 356 357
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
358 359 360 361 362 363 364
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

J
jiangjiajun@baidu.com 已提交
365
            if need_define_shape == 1:
J
fix bug  
jiangjiajun 已提交
366 367 368 369 370 371
                try:
                    shape = graph_node.out_shapes[0]
                    if len(shape) > 0 and shape.count(-1) < 2:
                        need_define_shape = 0
                except:
                    pass
J
jiangjiajun@baidu.com 已提交
372

J
jiangjiajun 已提交
373
            if need_define_shape > 0:
374 375 376 377
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
378
                if need_define_shape == 1:
J
jiangjiajun 已提交
379 380
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
381
                elif need_define_shape == 2:
J
jiangjiajun 已提交
382
                    print(
J
jiangjiajun 已提交
383 384
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
385 386 387 388
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
389
                print(
J
jiangjiajun 已提交
390 391 392 393
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
M
mamingjie-China 已提交
394 395 396 397 398
                    try:
                        shape = raw_input(
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
J
jiangjiajun 已提交
399
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
400
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
401 402 403
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
404 405 406 407
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
408
                assert shape.count(None) <= 1, "Only one dimension can be None"
409 410 411 412 413 414
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
J
jiangjiajun 已提交
415 416 417 418
                    x2paddle_input = tf.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
419

J
jiangjiajun 已提交
420
                input_map["{}:0".format(layer.name)] = x2paddle_input
421 422
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
J
jiangjiajun 已提交
423 424 425 426 427
                self.input_info["x2paddle_{}".format(layer.name)] = (shape,
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
M
mamingjie-China 已提交
428
                self.input_info[layer.name] = (shape, dtype)
J
jiangjiajun 已提交
429

J
jiangjiajun 已提交
430
        return input_map
J
jiangjiajun 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
    def infer_tensor(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        for input_name, info in self.input_info.items():
            (shape, dtype) = cp.deepcopy(info)
            input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
            if shape.count(-1) > 0:
                shape[shape.index(-1)] = 2
            feed[input_tensor] = numpy.random.random_sample(shape)
        output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
        return self.sess.run([output_tensor], feed)[0]

    def infer_shape_tensor(self, graph_node, out_shape=None):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        results = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            results.append(self.sess.run([output_tensor], feed)[0].flatten())

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")
J
jiangjiajun 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

    def infer_tensor_shape(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        shapes = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            shape = self.sess.run([output_tensor], feed)[0].shape
            shapes.append(numpy.array(shape))

        compare01 = (shapes[0] == shapes[1])
        compare12 = (shapes[1] == shapes[2])

        if compare01.all() and compare12.all():
            return shape[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            if index[0] != 0:
                raise Exception("Batch size not in the first dimension")
            shapes[0][0] = -1
            return shapes[0].tolist()